Differential Geometry/Algebraic Geometry
Gromov–Witten invariants of noncompact symplectic manifolds
[Invariants de Gromov–Witten des variétés symplectiques non compactes]
Comptes Rendus. Mathématique, Tome 338 (2004) no. 11, pp. 885-888.

Voir la notice de l'article provenant de la source Numdam

This is a short survey about our Gromov–Witten invariant theory for noncompact geometrically bounded symplectic manifolds.

Nous présentons dans cette Note la théorie des invariants des variétés symplectiques non compactes, géométriquement bornées.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.03.034

Lu, Guangcun 1

1 Department of Mathematics, Beijing Normal University, Beijing 100875, PR China
@article{CRMATH_2004__338_11_885_0,
     author = {Lu, Guangcun},
     title = {Gromov{\textendash}Witten invariants of noncompact symplectic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {885--888},
     publisher = {Elsevier},
     volume = {338},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.03.034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.03.034/}
}
TY  - JOUR
AU  - Lu, Guangcun
TI  - Gromov–Witten invariants of noncompact symplectic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 885
EP  - 888
VL  - 338
IS  - 11
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.03.034/
DO  - 10.1016/j.crma.2004.03.034
LA  - en
ID  - CRMATH_2004__338_11_885_0
ER  - 
%0 Journal Article
%A Lu, Guangcun
%T Gromov–Witten invariants of noncompact symplectic manifolds
%J Comptes Rendus. Mathématique
%D 2004
%P 885-888
%V 338
%N 11
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.03.034/
%R 10.1016/j.crma.2004.03.034
%G en
%F CRMATH_2004__338_11_885_0
Lu, Guangcun. Gromov–Witten invariants of noncompact symplectic manifolds. Comptes Rendus. Mathématique, Tome 338 (2004) no. 11, pp. 885-888. doi : 10.1016/j.crma.2004.03.034. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.03.034/

[1] Audin, M.; Lalonde, F.; Polterovich, L. Symplectic rigidity: Lagrangian submanifolds, Holomorphic Curves in Symplectic Geometry, Progr. Math., vol. 117, Birkhäuser, 1994, pp. 271-318

[2] Gromov, M. Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347

[3] Kontsevich, M. Enumeration of rational curves via torus actions (Dijkgraaf, H.; Faber, C.; Geer, G.v.d., eds.), Moduli Space of Surface, Birkhäuser, Boston, 1995, pp. 335-368

[4] Li, J.; Tian, G. Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, Topic in Symplectic 4-Manifolds, Irvine, CA, 1996, First Int. Press Lect. Ser., vol. I, International Press, Cambridge, MA, 1998, pp. 47-83

[5] Liu, G.; Tian, G. Floer homology and Arnold conjecture, J. Differential Geom., Volume 49 (1998), pp. 1-74

[6] Liu, G.; Tian, G. Weinstein conjecture and GW invariants, Commun. Contemp. Math., Volume 2 (2000), pp. 405-459

[7] Liu, G.; Tian, G. On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica, Volume 15 (1999), pp. 53-80

[8] Lu, G. Gromov–Witten invariants and rigidity of Hamiltonian loops with compact support on noncompact symplectic manifolds, Commun. Anal. Geom., Volume 9 (2001), pp. 1041-1092

[9] Lu, G. Virtual moduli cycles and Gromov–Witten invariants of noncompact symplectic manifolds (17 June, revised V2, 1 August 2003) | arXiv

[10] Sikorav, J.C. Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry, Progr. Math., vol. 117, Birkhäuser, 1994, pp. 165-189

Cité par Sources :