Partial Differential Equations
Compactness of solutions to the Yamabe problem
[Compacité des solutions du problème de Yamabe]
Comptes Rendus. Mathématique, Tome 338 (2004) no. 9, pp. 693-695.

Voir la notice de l'article provenant de la source Numdam

We establish compactness of solutions to the Yamabe problem on any smooth compact connected Riemannian manifold (not conformally diffeomorphic to standard spheres) of dimension n⩽7 as well as on any manifold of dimension n⩾8 under some additional hypothesis.

On établit la compacité des solutions du problème de Yamabe sur toute variété riemannienne, régulière compacte connexe (non conformément équivalente à la sphère standard) de dimension n⩽7. Le même résultat est valable en dimension n⩾8 sous une hypothèse supplémentaire.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.02.018

Li, YanYan 1 ; Zhang, Lei 2

1 Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA
2 Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77843-3368, USA
@article{CRMATH_2004__338_9_693_0,
     author = {Li, YanYan and Zhang, Lei},
     title = {Compactness of solutions to the {Yamabe} problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {693--695},
     publisher = {Elsevier},
     volume = {338},
     number = {9},
     year = {2004},
     doi = {10.1016/j.crma.2004.02.018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.02.018/}
}
TY  - JOUR
AU  - Li, YanYan
AU  - Zhang, Lei
TI  - Compactness of solutions to the Yamabe problem
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 693
EP  - 695
VL  - 338
IS  - 9
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.02.018/
DO  - 10.1016/j.crma.2004.02.018
LA  - en
ID  - CRMATH_2004__338_9_693_0
ER  - 
%0 Journal Article
%A Li, YanYan
%A Zhang, Lei
%T Compactness of solutions to the Yamabe problem
%J Comptes Rendus. Mathématique
%D 2004
%P 693-695
%V 338
%N 9
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.02.018/
%R 10.1016/j.crma.2004.02.018
%G en
%F CRMATH_2004__338_9_693_0
Li, YanYan; Zhang, Lei. Compactness of solutions to the Yamabe problem. Comptes Rendus. Mathématique, Tome 338 (2004) no. 9, pp. 693-695. doi : 10.1016/j.crma.2004.02.018. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2004.02.018/

[1] Aubin, T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296

[2] Bahri, A. Another proof of the Yamabe conjecture for locally conformally flat manifolds, Nonlinear Anal., Volume 20 (1993), pp. 1261-1278

[3] Bahri, A.; Brezis, H. Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, Topics in Geometry, Progr. Nonlinear Differential Equations Appl., vol. 20, Birkhäuser Boston, Boston, MA, 1996, pp. 1-100

[4] O. Druet, From one bubble to several bubbles. The low-dimensional case, J. Differential Geometry, in press

[5] Y.Y. Li, L. Zhang, A Harnack type inequality for the Yamabe equation in low dimensions, Calc. Var. Partial Differential Equations, in press

[6] Y.Y. Li, L. Zhang, Compactness of solutions to the Yamabe problem, in preparation

[7] Li, Y.Y.; Zhu, M. Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Contemp. Math., Volume 1 (1999), pp. 1-50

[8] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495

[9] Schoen, R. On the number of constant scalar curvature metrics in a conformal class (Lawson, H.B.; Tenenblat, K., eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, 1991, pp. 311-320

[10] Trudinger, N. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Cl. Sci., Volume 22 (1968) no. 3, pp. 265-274

[11] Yamabe, H. On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., Volume 12 (1960), pp. 21-37

Cité par Sources :