Voir la notice de l'article provenant de la source Numdam
The purpose of this Note is to extend to any space dimension the bilinear estimate for eigenfunctions of the Laplace operator on a compact manifold (without boundary) obtained by the authors (preprint: http://www.arxiv.org/abs/math/0308214) in dimension 2. We also give some related trilinear estimates.
L'objet de cette Note est de généraliser à toute dimension d'espace les estimations bilinéaires de projecteurs spectraux de l'opérateur de Laplace sur une variété compacte (sans bord), démontrées par les auteurs (preprint : http://www.arxiv.org/abs/math/0308214) en dimension 2. On énonce aussi des estimations trilinéaires.
Burq, Nicolas 1 ; Gérard, Patrick 1 ; Tzvetkov, Nikolay 1
@article{CRMATH_2004__338_5_359_0, author = {Burq, Nicolas and G\'erard, Patrick and Tzvetkov, Nikolay}, title = {Multilinear estimates for the {Laplace} spectral projectors on~compact manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {359--364}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2003.12.015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2003.12.015/} }
TY - JOUR AU - Burq, Nicolas AU - Gérard, Patrick AU - Tzvetkov, Nikolay TI - Multilinear estimates for the Laplace spectral projectors on compact manifolds JO - Comptes Rendus. Mathématique PY - 2004 SP - 359 EP - 364 VL - 338 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2003.12.015/ DO - 10.1016/j.crma.2003.12.015 LA - en ID - CRMATH_2004__338_5_359_0 ER -
%0 Journal Article %A Burq, Nicolas %A Gérard, Patrick %A Tzvetkov, Nikolay %T Multilinear estimates for the Laplace spectral projectors on compact manifolds %J Comptes Rendus. Mathématique %D 2004 %P 359-364 %V 338 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2003.12.015/ %R 10.1016/j.crma.2003.12.015 %G en %F CRMATH_2004__338_5_359_0
Burq, Nicolas; Gérard, Patrick; Tzvetkov, Nikolay. Multilinear estimates for the Laplace spectral projectors on compact manifolds. Comptes Rendus. Mathématique, Tome 338 (2004) no. 5, pp. 359-364. doi : 10.1016/j.crma.2003.12.015. http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2003.12.015/
[1] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces (Preprint, 2003) | arXiv
[2] Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 1990
[3] Oscillatory integrals and multipliers on FLp, Ark. Math., Volume 11 (1973), pp. 1-11
[4] Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65
[5] Concerning the Lp norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988), pp. 123-138
[6] Fourier Integrals in Classical Analysis, Cambridge Tracts in Math., 1993
[7] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs Harmon. Anal., III, Princeton University Press, Princeton, NJ, 1993
Cité par Sources :