Global C regularity of the steady Prandtl equation with favorable pressure gradient
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1989-2004.

Voir la notice de l'article provenant de la source Numdam

In the case of favorable pressure gradient, Oleinik obtained the global-in-x solutions to the steady Prandtl equations with low regularity (see Oleinik and Samokhin [9], P.21, Theorem 2.1.1). Due to the degeneracy of the equation near the boundary, the question of higher regularity of Oleinik's solutions remains open. See the local-in-x higher regularity established by Guo and Iyer [5]. In this paper, we prove that Oleinik's solutions are smooth up to the boundary y=0 for any x>0, using further maximum principle techniques. Moreover, since Oleinik only assumed low regularity on the data prescribed at x=0, our result implies instant smoothness (in the steady case, x=0 is often considered as initial time).

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.007
Keywords: Global $ {C}^{\infty }$ regularity, Steady Prandtl equations, Favorable pressure gradient

Wang, Yue 1 ; Zhang, Zhifei 2

1 a School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2 b School of Mathematical Sciences, Peking University, 100871, Beijing, China
@article{AIHPC_2021__38_6_1989_0,
     author = {Wang, Yue and Zhang, Zhifei},
     title = {Global {\protect\emph{C}
}               \protect\textsuperscript{\ensuremath{\infty}} regularity of the steady {Prandtl} equation with favorable pressure gradient},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1989--2004},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.02.007},
     mrnumber = {4327905},
     zbl = {1475.35099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.02.007/}
}
TY  - JOUR
AU  - Wang, Yue
AU  - Zhang, Zhifei
TI  - Global C
               ∞ regularity of the steady Prandtl equation with favorable pressure gradient
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1989
EP  - 2004
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.02.007/
DO  - 10.1016/j.anihpc.2021.02.007
LA  - en
ID  - AIHPC_2021__38_6_1989_0
ER  - 
%0 Journal Article
%A Wang, Yue
%A Zhang, Zhifei
%T Global C
               ∞ regularity of the steady Prandtl equation with favorable pressure gradient
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1989-2004
%V 38
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.02.007/
%R 10.1016/j.anihpc.2021.02.007
%G en
%F AIHPC_2021__38_6_1989_0
Wang, Yue; Zhang, Zhifei. Global C
                regularity of the steady Prandtl equation with favorable pressure gradient. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1989-2004. doi : 10.1016/j.anihpc.2021.02.007. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.02.007/

[1] Dalibard, A.; Masmoudi, N. Separation for the stationary Prandtl equation, Publ. Math. Inst. Hautes Études Sci., Volume 130 (2019), pp. 187-297 | MR | Zbl | DOI

[2] E, W. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin., Volume 16 (2000), pp. 207-218 | MR | Zbl | DOI

[3] Gerard-Varet, D.; Maekawa, Y. Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 233 (2019), pp. 1319-1382 | MR | Zbl | DOI

[4] Guo, Y.; Iyer, S. Validity of steady Prandtl layer expansions | arXiv | Zbl | DOI

[5] Guo, Y.; Iyer, S. Regularity and expansion for steady Prandtl equations | arXiv | Zbl | DOI

[6] Iyer, S. On global-in-x stability of Blasius profiles, Arch. Ration. Mech. Anal., Volume 237 (2020), pp. 951-998 | MR | Zbl | DOI

[7] Iyer, S.; Masmoudi, N. Global-in-x stability of steady Prandtl expansions for 2D Navier-Stokes flows | arXiv

[8] Krylov, N.V. Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996 | MR | Zbl

[9] Oleinik, O.A.; Samokhin, V.N. Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl

[10] Prandtl, L., Heidelberg (1904), pp. 484-491

[11] Serrin, J. Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. R. Soc. Lond. A, Volume 299 (1967), pp. 491-507 | MR | Zbl | DOI

[12] Shen, W.; Wang, Y.; Zhang, Z. Boundary layer separation and local behavior for the steady Prandtl equation | arXiv | Zbl | DOI

[13] Xin, Z.; Zhang, L. On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88-133 | MR | Zbl | DOI

Cité par Sources :