On unique continuation principles for some elliptic systems
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1667-1680.

Voir la notice de l'article provenant de la source Numdam

In this paper we prove unique continuation principles for some systems of elliptic partial differential equations satisfying a suitable superlinearity condition. As an application, we obtain nonexistence of nontrivial (not necessarily positive) radial solutions for the Lane-Emden system posed in a ball, in the critical and supercritical regimes. Some of our results also apply to general fully nonlinear operators, such as Pucci's extremal operators, being new even for scalar equations.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.001
Classification : 35J47, 35J60, 35B06, 35B50
Keywords: Unique continuation, Elliptic system, Lane-Emden, Nonexistence

Moreira dos Santos, Ederson 1 ; Nornberg, Gabrielle 1 ; Soave, Nicola 2

1 a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil
2 b Dipartimento di Matematica, Politecnico di Milano, Italy
@article{AIHPC_2021__38_5_1667_0,
     author = {Moreira dos Santos, Ederson and Nornberg, Gabrielle and Soave, Nicola},
     title = {On unique continuation principles for some elliptic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1667--1680},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.12.001},
     mrnumber = {4300936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.12.001/}
}
TY  - JOUR
AU  - Moreira dos Santos, Ederson
AU  - Nornberg, Gabrielle
AU  - Soave, Nicola
TI  - On unique continuation principles for some elliptic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1667
EP  - 1680
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.12.001/
DO  - 10.1016/j.anihpc.2020.12.001
LA  - en
ID  - AIHPC_2021__38_5_1667_0
ER  - 
%0 Journal Article
%A Moreira dos Santos, Ederson
%A Nornberg, Gabrielle
%A Soave, Nicola
%T On unique continuation principles for some elliptic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1667-1680
%V 38
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.12.001/
%R 10.1016/j.anihpc.2020.12.001
%G en
%F AIHPC_2021__38_5_1667_0
Moreira dos Santos, Ederson; Nornberg, Gabrielle; Soave, Nicola. On unique continuation principles for some elliptic systems. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1667-1680. doi : 10.1016/j.anihpc.2020.12.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.12.001/

[1] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727 | MR | Zbl | DOI

[2] Alinhac, S.; Baouendi, M.S. Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Am. J. Math., Volume 102 (1980) no. 1, pp. 179-217 | MR | Zbl | DOI

[3] Armstrong, S.N.; Silvestre, L. Unique continuation for fully nonlinear elliptic equations, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 921-926 | MR | Zbl | DOI

[4] Bonheure, D.; Moreira dos Santos, E.; Ramos, M. Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 62-96 | MR | Zbl | DOI

[5] Caffarelli, L.; Crandall, M.G.; Kocan, M.; Swiech, A. On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-397 | MR | Zbl | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Caffarelli, L.A.; Cabré, X. Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995 | MR | Zbl

[7] Caffarelli, L.A.; Friedman, A. The free boundary in the Thomas-Fermi atomic model, J. Differ. Equ., Volume 32 (1979) no. 3, pp. 335-356 | MR | Zbl | DOI

[8] Caffarelli, L.A.; Friedman, A. Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differ. Equ., Volume 60 (1985) no. 3, pp. 420-433 | MR | Zbl | DOI

[9] Carleman, T. Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astron. Fys., Volume 26 (1939) no. 17, p. 9 | MR | Zbl

[10] Colombini, F.; Grammatico, C. Some remarks on strong unique continuation for the Laplace operator and its powers, Commun. Partial Differ. Equ., Volume 24 (1999) no. 5–6, pp. 1079-1094 | MR | Zbl | DOI

[11] Colombini, F.; Koch, H. Strong unique continuation for products of elliptic operators of second order, Trans. Am. Math. Soc., Volume 362 (2010) no. 1, pp. 345-355 | MR | Zbl | DOI

[12] Dalmasso, R. Existence and uniqueness of positive radial solutions for the Lane-Emden system, Nonlinear Anal., Volume 57 (2004) no. 3, pp. 341-348 | MR | Zbl | DOI

[13] Farina, A. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5869-5877 | MR | DOI

[14] Garofalo, N.; Lin, F.-H. Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Univ. Math. J., Volume 35 (1986) no. 2, pp. 245-268 | MR | Zbl | DOI

[15] Garofalo, N.; Lin, F.-H. Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347-366 | MR | Zbl | DOI

[16] Gazzola, F.; Grunau, H.-C.; Sweers, G. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010 | MR | Zbl | DOI

[17] Han, Q. Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., Volume 43 (1994) no. 3, pp. 983-1002 | MR | Zbl | DOI

[18] Hörmander, L. The Analysis of Linear Partial Differential Operators. IV: Fourier Integral Operators, Classics in Mathematics, Springer-Verlag, Berlin, 2009 (Reprint of the 1994 edition) | MR | Zbl

[19] Jerison, D.; Kenig, C.E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math. (2), Volume 121 (1985) no. 3, pp. 463-494 (With an appendix by E.M. Stein) | MR | Zbl | DOI

[20] Koch, H.; Tataru, D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | MR | Zbl | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] Koike, S.; Świech, A. Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., Volume 339 (2007) no. 2, pp. 461-484 | MR | Zbl | DOI

[22] Li, Y.Y. Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differ. Equ., Volume 83 (1990) no. 2, pp. 348-367 | MR | Zbl | DOI

[23] Lin, F.-H. Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 287-308 | MR | Zbl | DOI

[24] Mitidieri, E. A Rellich type identity and applications, Commun. Partial Differ. Equ., Volume 18 (1993) no. 1–2, pp. 125-151 | MR | Zbl | DOI

[25] Montaru, A.; Sirakov, B.; Souplet, P. Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 129-169 | MR | Zbl | DOI

[26] Montenegro, M. The construction of principal spectral curves for Lane-Emden systems and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 29 (2000) no. 1, pp. 193-229 | MR | Zbl | mathdoc-id

[27] Moreira dos Santos, E.; Nornberg, G. Symmetry properties of positive solutions for fully nonlinear elliptic systems, J. Differ. Equ., Volume 269 (2020), pp. 4175-4191 | MR | DOI

[28] Protter, M.H. Unique continuation for elliptic equations, Trans. Am. Math. Soc., Volume 95 (1960), pp. 81-91 | MR | Zbl | DOI

[29] Quittner, P.; Souplet, P. Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2545-2559 | MR | Zbl | DOI

[30] Rüland, A. Unique continuation for sublinear elliptic equations based on Carleman estimates, J. Differ. Equ., Volume 265 (2018) no. 11, pp. 6009-6035 | MR | DOI

[31] Saldaña, A.; Tavares, H. Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions, J. Differ. Equ., Volume 265 (2018) no. 12, pp. 6127-6165 | MR | DOI

[32] Sirakov, B. Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE, Int. Math. Res. Not., Volume 24 (2018), pp. 7457-7482 | MR | DOI

[33] Soave, N.; Terracini, S. The nodal set of solutions to some elliptic problems: sublinear equations, and unstable two-phase membrane problem, Adv. Math., Volume 334 (2018), pp. 243-299 | MR | DOI

[34] Soave, N.; Terracini, S. The nodal set of solutions to some elliptic problems: singular nonlinearities, J. Math. Pures Appl., Volume 9 (2019) no. 128, pp. 264-296 | MR | DOI

[35] Soave, N.; Weth, T. The unique continuation property of sublinear equations, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 3919-3938 | MR | DOI

[36] Troy, W.C. Symmetry properties in systems of semilinear elliptic equations, J. Differ. Equ., Volume 42 (1981) no. 3, pp. 400-413 | MR | Zbl | DOI

Cité par Sources :