On critical points of the relative fractional perimeter
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428.

Voir la notice de l'article provenant de la source Numdam

We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
Keywords: Fractional mean curvature, Isoperimetric sets, Perturbative variational theory

Malchiodi, Andrea 1 ; Novaga, Matteo 2 ; Pagliardini, Dayana 1

1 a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2 b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56217 Pisa, Italy
@article{AIHPC_2021__38_5_1407_0,
     author = {Malchiodi, Andrea and Novaga, Matteo and Pagliardini, Dayana},
     title = {On critical points of the relative fractional perimeter},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1407--1428},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.005},
     mrnumber = {4300927},
     zbl = {1475.49053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/}
}
TY  - JOUR
AU  - Malchiodi, Andrea
AU  - Novaga, Matteo
AU  - Pagliardini, Dayana
TI  - On critical points of the relative fractional perimeter
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1407
EP  - 1428
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/
DO  - 10.1016/j.anihpc.2020.11.005
LA  - en
ID  - AIHPC_2021__38_5_1407_0
ER  - 
%0 Journal Article
%A Malchiodi, Andrea
%A Novaga, Matteo
%A Pagliardini, Dayana
%T On critical points of the relative fractional perimeter
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1407-1428
%V 38
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/
%R 10.1016/j.anihpc.2020.11.005
%G en
%F AIHPC_2021__38_5_1407_0
Malchiodi, Andrea; Novaga, Matteo; Pagliardini, Dayana. On critical points of the relative fractional perimeter. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428. doi : 10.1016/j.anihpc.2020.11.005. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/

[1] Almgren, F.J. Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., Volume 4 (1976) no. 165 (viii+199) | MR | Zbl

[2] Ambrosetti, A.; Malchiodi, A. Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[3] Ambrosetti, A.; Malchiodi, A. Perturbation Methods and Semilinear Elliptic Problems on Rn , Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[4] Ambrosio, L.; De Philippis, G.; Martinazzi, L. Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377-403 | MR | Zbl | DOI

[5] Barrios, B.; Figalli, A.; Valdinoci, E. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014) no. 3, pp. 609-639 | MR | Zbl

[6] Bressan, A. Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications, vol. 20, Oxford University Press, Oxford, 2000 (The one-dimensional Cauchy problem) | MR | Zbl

[7] Cabré, X.; Fall, M.M.; Weth, T. Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay, Math. Ann., Volume 370 (2018) no. 3–4, pp. 1513-1569 | Zbl | DOI

[8] Caffarelli, L.; Roquejoffre, J.-M.; Savin, O. Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111-1144 | MR | Zbl | DOI

[9] Cesaroni, A.; Novaga, M. Volume constrained minimizers of the fractional perimeter with a potential energy, Discrete Contin. Dyn. Syst., Ser. S, Volume 10 (2017) no. 4, pp. 715-727 | MR | Zbl

[10] Di Castro, A.; Novaga, M.; Ruffini, B.; Valdinoci, E. Nonlocal quantitative isoperimetric inequalities, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3 | MR | Zbl | DOI

[11] Druet, O. Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Am. Math. Soc., Volume 130 (2002) no. 8, pp. 2351-2361 | MR | Zbl | DOI

[12] Davila, J.; Del Pino, M.; Wei, J. Nonlocal minimal Lawson cones, J. Differ. Geom., Volume 109 (2018) no. 1, pp. 111-175 | MR | Zbl | DOI

[13] Fall, M.M. Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pac. J. Math., Volume 244 (2010) no. 2, pp. 235-260 | MR | Zbl | DOI

[14] Fall, M.M. Embedded disc-type surfaces with large constant mean curvature and free boundaries, Commun. Contemp. Math., Volume 14 (2012) no. 6 | MR | Zbl

[15] Fall, M.M.; Minlend, I.A. Serrin's over-determined problem on Riemannian manifolds, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 371-400 | MR | Zbl | DOI

[16] Figalli, A.; Fusco, N.; Maggi, F.; Millot, V.; Morini, M. Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., Volume 336 (2015) no. 1, pp. 441-507 | MR | Zbl | DOI

[17] Fusco, N.; Millot, V.; Morini, M. A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal., Volume 261 (2011) no. 3, pp. 697-715 | MR | Zbl | DOI

[18] Gonzalez, E.; Massari, U.; Tamanini, I. On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 25-37 | MR | Zbl | DOI

[19] Grossi, M. Uniqueness of the least-energy solution for a semilinear Neumann problem, Proc. Am. Math. Soc., Volume 128 (2000) no. 6, pp. 1665-1672 | MR | Zbl | DOI

[20] Grossi, M. Uniqueness results in nonlinear elliptic problems, Methods Appl. Anal., Volume 8 (2001) no. 2, pp. 227-244 IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999) | MR | Zbl | DOI

[21] Grossi, M. A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differ. Equ., Volume 5 (2000) no. 1–3, pp. 193-212 | MR | Zbl

[22] Grüter, M. Boundary regularity for solutions of a partitioning problem, Arch. Ration. Mech. Anal., Volume 97 (1987) no. 3, pp. 261-270 | MR | Zbl | DOI

[23] James, I.M. On category, in the sense of Lusternik-Schnirelmann, Topology, Volume 17 (1978) no. 4, pp. 331-348 | MR | Zbl | DOI

[24] Maggi, F.; Valdinoci, E. Capillarity problems with nonlocal surface tension energies, Commun. Partial Differ. Equ., Volume 42 (2017) no. 9, pp. 1403-1446 | MR | Zbl | DOI

[25] Mihaila, C. Axial symmetry for fractional capillarity droplets, Commun. Partial Differ. Equ., Volume 43 (2018) no. 12, pp. 1673-1701 | MR | Zbl | DOI

[26] Morgan, F.; Johnson, D.L. Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1017-1041 | MR | Zbl | DOI

[27] Riesz, F. Sur une inégalité intégrale, J. Lond. Math. Soc., Volume 5 (1930), pp. 162-168 | MR | JFM | DOI

[28] Ros, A. The isoperimetric problem, Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175-209 | MR | Zbl

[29] Samko, S.G. Hypersingular Integrals and Their Applications, Analytical Methods and Special Functions, vol. 5, Taylor & Francis, Ltd., London, 2002 | MR | Zbl

[30] Sáez, M.; Valdinoci, E. On the evolution by fractional mean curvature, Commun. Anal. Geom., Volume 27 (2019) no. 1, pp. 211-249 | MR | Zbl | DOI

[31] Taylor, J.E. Boundary regularity for solutions to various capillarity and free boundary problems, Commun. Partial Differ. Equ., Volume 2 (1977) no. 4, pp. 323-357 | MR | Zbl | DOI

[32] Ye, R. Foliation by constant mean curvature spheres, Pac. J. Math., Volume 147 (1991) no. 2, pp. 381-396 | MR | Zbl | DOI

Cité par Sources :