The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 759-786.

Voir la notice de l'article provenant de la source Numdam

In this paper we prove the existence and linear stability of full dimensional tori with subexponential decay for 1-dimensional nonlinear wave equation with external parameters, which relies on the method of KAM theory and the idea proposed by Bourgain [9].

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.09.006
Keywords: KAM theory, Almost periodic solution, Nonlinear wave equation, Gevrey space

Cong, Hongzi 1 ; Yuan, Xiaoping 2

1 a School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, PR China
2 b School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China
@article{AIHPC_2021__38_3_759_0,
     author = {Cong, Hongzi and Yuan, Xiaoping},
     title = {The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {759--786},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.006},
     zbl = {1466.35314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.006/}
}
TY  - JOUR
AU  - Cong, Hongzi
AU  - Yuan, Xiaoping
TI  - The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 759
EP  - 786
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.006/
DO  - 10.1016/j.anihpc.2020.09.006
LA  - en
ID  - AIHPC_2021__38_3_759_0
ER  - 
%0 Journal Article
%A Cong, Hongzi
%A Yuan, Xiaoping
%T The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 759-786
%V 38
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.006/
%R 10.1016/j.anihpc.2020.09.006
%G en
%F AIHPC_2021__38_3_759_0
Cong, Hongzi; Yuan, Xiaoping. The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 759-786. doi : 10.1016/j.anihpc.2020.09.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.006/

[1] Baldi, P.; Berti, M.; Haus, E.; Montalto, R. Time quasi-periodic gravity water waves in finite depth, Invent. Math., Volume 214 (2018) no. 2, pp. 739-911 | Zbl | DOI

[2] Baldi, P.; Berti, M.; Montalto, R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014) no. 1–2, pp. 471-536 | Zbl | DOI

[3] Baldi, P.; Berti, M.; Montalto, R. KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1589-1638 | Zbl | mathdoc-id | DOI

[4] Berti, M.; Bolle, P. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity, Volume 25 (2012) no. 9, pp. 2579-2613 | Zbl | DOI

[5] Berti, M.; Bolle, P. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential, J. Eur. Math. Soc., Volume 15 (2013) no. 1, pp. 229-286 | Zbl | DOI

[6] Bourgain, J. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Volume 6 (1996) no. 2, pp. 201-230 | Zbl | DOI

[7] Bourgain, J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. Math. (2), Volume 148 (1998) no. 2, pp. 363-439 | Zbl | DOI

[8] Bourgain, J. Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, NJ, 2005 | Zbl

[9] Bourgain, J. On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., Volume 229 (2005) no. 1, pp. 62-94 | Zbl | DOI

[10] Bourgain, J.; Kachkovskiy, I. Anderson localization for two interacting quasiperiodic particles, Geom. Funct. Anal. (2019) | Zbl | DOI

[11] Cong, H.; Liu, J.; Shi, Y.; Yuan, X. The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differ. Equ., Volume 264 (2018) no. 7, pp. 4504-4563 | Zbl | DOI

[12] Craig, W.; Wayne, C.E. Newton's method and periodic solutions of nonlinear wave equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 11, pp. 1409-1498 | Zbl | DOI

[13] Eliasson, L.H.; Kuksin, S.B. KAM for the nonlinear Schrödinger equation, Ann. Math. (2), Volume 172 (2010) no. 1, pp. 371-435 | Zbl | DOI

[14] Feola, R.; Procesi, M. Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differ. Equ., Volume 259 (2015) no. 7, pp. 3389-3447 | Zbl | DOI

[15] Gao, M.; Liu, J. Invariant tori for 1D quintic nonlinear wave equation, J. Differ. Equ., Volume 263 ( Dec. 2017 ), pp. 8533-8564 | Zbl | DOI

[16] Geng, J.; Xu, X. Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dyn. Differ. Equ., Volume 25 (2013) no. 2, pp. 435-450 | Zbl | DOI

[17] Kappeler, T.; Pöschel, J. KdV & KAM, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge, vol. 45, Springer-Verlag, Berlin, 2003 | Zbl

[18] Kuksin, S.; Pöschel, J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), Volume 143 (1996) no. 1, pp. 149-179 | Zbl | DOI

[19] Kuksin, S.B. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funkc. Anal. Prilozh., Volume 21 (1987) no. 3, pp. 22-37 (95) | Zbl

[20] Kuksin, S.B. Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its Applications, vol. 19, Oxford University Press, Oxford, 2000 | Zbl

[21] Kuksin, S.B. Fifteen years of KAM for PDE, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, vol. 212, Amer. Math. Soc., Providence, RI, 2004, pp. 237-258 | Zbl

[22] Biasco, J.E.M.L.; Procesi, M. Almost periodic invariant tori for the nls on the circle, 2019 | arXiv | Zbl

[23] Liu, J.; Yuan, X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 629-673 | Zbl | DOI

[24] Pöschel, J. Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269-296 | Zbl | DOI

[25] Pöschel, J. On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergod. Theory Dyn. Syst., Volume 22 (2002) no. 5, pp. 1537-1549 | Zbl | DOI

[26] Wang, W.-M. Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions, Duke Math. J., Volume 165 (2016) no. 6, pp. 1129-1192 | Zbl

[27] Wayne, C.E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990) no. 3, pp. 479-528 | Zbl | DOI

Cité par Sources :