Almost periodic invariant tori for the NLS on the circle
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 711-758.

Voir la notice de l'article provenant de la source Numdam

In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract “counter-term theorem” à la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find “many more” almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.09.003
Keywords: Almost periodic solutions, Nonlinear Schrodinger equation, KAM for PDEs

Biasco, Luca 1 ; Massetti, Jessica Elisa 1 ; Procesi, Michela 1

1 Università degli Studi Roma Tre, Italy
@article{AIHPC_2021__38_3_711_0,
     author = {Biasco, Luca and Massetti, Jessica Elisa and Procesi, Michela},
     title = {Almost periodic invariant tori for the {NLS} on the circle},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {711--758},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.003},
     mrnumber = {4227050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.003/}
}
TY  - JOUR
AU  - Biasco, Luca
AU  - Massetti, Jessica Elisa
AU  - Procesi, Michela
TI  - Almost periodic invariant tori for the NLS on the circle
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 711
EP  - 758
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.003/
DO  - 10.1016/j.anihpc.2020.09.003
LA  - en
ID  - AIHPC_2021__38_3_711_0
ER  - 
%0 Journal Article
%A Biasco, Luca
%A Massetti, Jessica Elisa
%A Procesi, Michela
%T Almost periodic invariant tori for the NLS on the circle
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 711-758
%V 38
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.003/
%R 10.1016/j.anihpc.2020.09.003
%G en
%F AIHPC_2021__38_3_711_0
Biasco, Luca; Massetti, Jessica Elisa; Procesi, Michela. Almost periodic invariant tori for the NLS on the circle. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 711-758. doi : 10.1016/j.anihpc.2020.09.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.003/

[1] Berti, M.; Biasco, L. Branching of Cantor manifolds of elliptic tori and applications to PDEs, Commun. Math. Phys., Volume 305 (2011) no. 3, pp. 741-796 | MR | Zbl | DOI

[2] Berti, M.; Bolle, Ph. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity, Volume 25 (2012) no. 9, pp. 2579-2613 | MR | Zbl | DOI

[3] Berti, M.; Bolle, Ph. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential, J. Eur. Math. Soc., Volume 15 (2013) no. 1, pp. 229-286 | MR | Zbl | DOI

[4] Berti, M.; Bolle, Ph. A Nash-Moser approach to KAM theory, Hamiltonian Partial Differential Equations and Applications, Fields Inst. Commun., vol. 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 255-284 | MR | DOI

[5] Baldi, P.; Berti, M.; Haus, E.; Montalto, Riccardo Time quasi-periodic gravity water waves in finite depth, Invent. Math., Volume 214 (2018) no. 2, pp. 739-911 | MR | DOI

[6] Baldi, Pietro; Berti, M.; Montalto, Riccardo KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1589-1638 | MR | mathdoc-id | DOI

[7] Berti, M.; Corsi, L.; Procesi, M. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds, Commun. Math. Phys., Volume 334 (2015) no. 3, pp. 1413-1454 | MR | Zbl | DOI

[8] Berti, M.; Delort, J.-M. Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle, Lecture Notes of the Unione Matematica Italiana., vol. 24, Springer, Cham, 2018 (Unione Matematica Italiana, Bologna) | MR

[9] Bambusi, D.; Grébert, B. Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., Volume 135 (2006) no. 3, pp. 507-567 | MR | Zbl | DOI

[10] Broer, H.W.; Huitema, G.B.; Takens, F.; Braaksma, B.L.J. Unfoldings and bifurcations of quasi-periodic tori, Mem. Am. Math. Soc., Volume 83 (1990) no. 421 (viii+175) | MR | Zbl

[11] Berti, M.; Montalto, R.; Kappeler, T. Large KAM tori for quasi-linear perturbations of KdV (preprint) | arXiv | MR | DOI

[12] Biasco, L.; Massetti, J.E.; Procesi, M. An Abstract Brkhoff Normal Form Theorem and exponential type stability of the 1d NLS, Commun. Math. Phys., Volume 375 (2020), pp. 2089-2153 | MR | DOI

[13] Biasco, L.; Massetti, J.E.; Procesi, M. On the construction of Sobolev almost periodic invariant tori for the 1d NLS, 2020 (preprint) | arXiv | MR

[14] Bourgain, J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not., Volume 1994 (1994) no. 11, pp. 475-497 | MR | Zbl | DOI

[15] Bourgain, J. On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., Volume 229 (2005) no. 1, pp. 62-94 | MR | Zbl | DOI

[16] Corsi, L.; Feola, R.; Procesi, M. Finite dimensional invariant KAM tori for tame vector fields, Trans. Am. Math. Soc., Volume 372 (2019) no. 3, pp. 1913-1983 | MR | DOI

[17] Corsi, L.; Gentile, G.; Procesi, M. KAM theory in configuration space and cancellations in the Lindstedt series, Commun. Math. Phys., Volume 302 (2011) no. 2, pp. 359-402 | MR | Zbl | DOI

[18] Chenciner, A. Bifurcations de points fixes elliptiques. I. Courbes invariantes, Publ. Math. IHÉS, Volume 61 (1985), pp. 67-127 | MR | Zbl | mathdoc-id | DOI

[19] Cong, H.; Liu, J.; Shi, Y.; Yuan, X. The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differ. Equ., Volume 264 (2018) no. 7, pp. 4504-4563 | MR | DOI

[20] Corsi, L.; Montalto, R.; Procesi, M. Almost-periodic Response Solutions for a forced quasi-linear Airy equation (preprint) | arXiv | MR | DOI

[21] Craig, W.; Wayne, C.E. Newton's method and periodic solutions of nonlinear wave equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 11, pp. 1409-1498 | MR | Zbl | DOI

[22] de la Llave, R.; Gonzalez, A.; Jorba, A.; Villanueva, J. KAM theory without action-angles, Nonlinearity, Volume 18 (2005) no. 2, pp. 855-895 | MR | Zbl | DOI

[23] Eliasson, L.H.; Fayad, B.; Krikorian, R. KAM-tori near an analytic elliptic fixed point, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 801-831 | MR | Zbl | DOI

[24] Eliasson, L.H.; Kuksin, S.B. KAM for the nonlinear Schrödinger equation, Ann. Math. (2), Volume 172 (2010) no. 1, pp. 371-435 | MR | Zbl | DOI

[25] Féjoz, J. Démonstration du “théorème d'Arnold” sur la stabilité du système planétaire (d'après Michael Herman), Michael Herman Memorial Issue, Ergod. Theory Dyn. Syst., Volume 24 (2004) no. 5, pp. 1521-1582 | MR | Zbl | DOI

[26] Faou, E.; Grébert, B. A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, Volume 6 (2013) no. 6, pp. 1243-1262 | MR | Zbl | DOI

[27] Feola, R.; Iandoli, F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 1, pp. 119-164 | MR | mathdoc-id | DOI

[28] Feola, R.; Iandoli, F. Long time existence for fully nonlinear NLS with small Cauchy data on the circle, Ann. Sc. Norm. Super. Pisa (2019) | MR | DOI

[29] Fayad, B.; Krikorian, R. Herman's last geometric theorem, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 2, pp. 193-219 | MR | Zbl | mathdoc-id | DOI

[30] Geng, J.; Xu, X. Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dyn. Differ. Equ., Volume 25 (2013) no. 2, pp. 435-450 | MR | Zbl | DOI

[31] Geng, J.; Xu, X.; You, J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., Volume 226 (2011) no. 6, pp. 5361-5402 | MR | Zbl | DOI

[32] Herman, M.-R. Sur les courbes invariantes par les difféomorphismes de l'anneau. Vol. 1, Astérisque, vol. 103, Société Mathématique de France, Paris, 1983 (with an appendix by Albert Fathi, with an English summary) | MR | Zbl | mathdoc-id

[33] Herman, M.; Sergeraert, F. Sur un théorème d'Arnold et Kolmogorov, C. R. Acad. Sci. Paris Sér. A-B, Volume 273 (1971), p. A409-A411 | MR | Zbl

[34] Kuksin, S.; Pöschel, J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), Volume 143 (1996) no. 1, pp. 149-179 | MR | Zbl | DOI

[35] Li, X.; Liu, S. The relation between the size of perturbations and the dimension of tori in an infinite-dimensional KAM theorem of Pöschel, Nonlinear Anal., Volume 197 (2020) | MR

[36] Massetti, J.E. A normal form à la Moser for diffeomorphisms and a generalization of Rüssmann's translated curve theorem to higher dimensions, Anal. PDE, Volume 11 (2018) no. 1, pp. 149-170 | MR | DOI

[37] Massetti, J.E. Normal forms for perturbations of systems possessing a Diophantine invariant torus, Ergod. Theory Dyn. Syst., Volume 39 (2019) no. 8, pp. 2176-2222 | MR | DOI

[38] Moser, J. Convergent series expansions for quasi-periodic motions, Math. Ann., Volume 169 (1967), pp. 136-176 | MR | Zbl | DOI

[39] Montalto, R.; Procesi, M. Linear Schrödinger equation with an almost periodic potential (preprint) | arXiv | MR | DOI

[40] Maspero, A.; Procesi, M. Long time stability of small finite gap solutions of the cubic nonlinear Schrödinger equation on T2 , J. Differ. Equ., Volume 265 (2018) no. 7, pp. 3212-3309 | MR | DOI

[41] Pöschel, J. On elliptic lower-dimensional tori in Hamiltonian systems, Math. Z., Volume 202 (1989) no. 4, pp. 559-608 | MR | Zbl | DOI

[42] Pöschel, J. A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 23 (1996) no. 1, pp. 119-148 | MR | Zbl | mathdoc-id

[43] Pöschel, J. A lecture on the classical KAM theorem, Seattle, WA, 1999 (Proc. Sympos. Pure Math.), Volume vol. 69, Amer. Math. Soc., Providence, RI (2001), pp. 707-732 | MR | Zbl | DOI

[44] Pöschel, J. On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergod. Theory Dyn. Syst., Volume 22 (2002) no. 5, pp. 1537-1549 | MR | Zbl | DOI

[45] Rüssmann, H. On the existence of invariant curves of twist mappings of an annulus, Rio de Janeiro, 1981 (Lecture Notes in Math.), Volume vol. 1007, Springer, Berlin (1983), pp. 677-718 | MR | Zbl | DOI

[46] Stolovitch, L. Singular complete integrability, Publ. Math. IHÉS, Volume 91 (2001), pp. 133-210 | MR | Zbl | DOI

[47] Wayne, C.E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990) no. 3, pp. 479-528 | MR | Zbl | DOI

Cité par Sources :