Voir la notice de l'article provenant de la source Numdam
We establish local estimates for one source near field refractors under structural assumptions on the target, and with no assumptions on the smoothness of the densities.
Gutiérrez, Cristian E. 1 ; Tournier, Federico 2
@article{AIHPC_2021__38_3_577_0, author = {Guti\'errez, Cristian E. and Tournier, Federico}, title = {$C^{1 , \alpha}$-estimates for the near field refractor}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {577--600}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.002}, mrnumber = {4227046}, zbl = {1462.78004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.002/} }
TY - JOUR AU - Gutiérrez, Cristian E. AU - Tournier, Federico TI - $C^{1 , \alpha}$-estimates for the near field refractor JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 577 EP - 600 VL - 38 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.002/ DO - 10.1016/j.anihpc.2020.08.002 LA - en ID - AIHPC_2021__38_3_577_0 ER -
%0 Journal Article %A Gutiérrez, Cristian E. %A Tournier, Federico %T $C^{1 , \alpha}$-estimates for the near field refractor %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 577-600 %V 38 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.002/ %R 10.1016/j.anihpc.2020.08.002 %G en %F AIHPC_2021__38_3_577_0
Gutiérrez, Cristian E.; Tournier, Federico. $C^{1 , \alpha}$-estimates for the near field refractor. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 577-600. doi : 10.1016/j.anihpc.2020.08.002. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.002/
[1] An iterative method for generated Jacobian equations, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 101, pp. 1-14 | MR | Zbl
[2] -estimates for the parallel refractor, Nonlinear Anal., Volume 142 (2016), pp. 1-25 | MR | Zbl | DOI
[3] On the regularity of reflector antennas, Ann. Math., Volume 167 (2008), pp. 299-323 | MR | Zbl | DOI
[4] A primer on generated Jacobian equations: geometry, optics, economics, Not. Am. Math. Soc., Volume 66 (2019) no. 9, pp. 1401-1411 | MR | Zbl
[5] Pointwise estimates and regularity in geometric optics and other generated Jacobian equations, Commun. Pure Appl. Math., Volume 70 (2017) no. 6, pp. 1146-1220 | MR | Zbl | DOI
[6] The near field refractor, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 4, pp. 655-684 | MR | Zbl | mathdoc-id | DOI
[7] C.E. Gutiérrez, H. Mawi, On the numerical solution of the near field refractor problem, Preprint, 2019. | MR
[8] Regularity for the near field parallel refractor and reflector problems, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 1, pp. 917-949 | MR | Zbl | DOI
[9] Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc., Volume 12 (2010) no. 4, pp. 1009-1040 | MR | Zbl | DOI
[10] On the numerical solution of the far field refractor problem, Nonlinear Anal., Volume 157 (2017), pp. 123-145 | MR | Zbl | DOI
[11] On the regularity of solutions of optimal transportation problems, Acta Math., Volume 202 (2009), pp. 241-283 | MR | Zbl | DOI
[12] Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 2, pp. 151-183 | MR | Zbl | DOI
Cité par Sources :