Conserved quantities and Hamiltonization of nonholonomic systems
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 23-60.

Voir la notice de l'article provenant de la source Numdam

This paper studies hamiltonization of nonholonomic systems using geometric tools, building on [1,5]. The main novelty in this paper is the use of symmetries and suitable first integrals of the system to explicitly define a new bracket on the reduced space that codifies the nonholonomic dynamics and carries, additionally, an almost symplectic foliation (determined by the common level sets of the first integrals); in particular cases of interest, this new bracket is a Poisson structure that hamiltonizes the system. Our construction of the new bracket is based on a gauge transformation of the nonholonomic bracket by a global 2-form that we explicitly describe. We study various geometric features of the reduced brackets and apply our formulas to obtain a geometric proof of the hamiltonization of a homogeneous ball rolling without sliding in the interior side of a convex surface of revolution.

DOI : 10.1016/j.anihpc.2020.05.003
Keywords: Nonholonomic systems, Hamiltonization, Geometric mechanics, Poisson brackets

Balseiro, Paula 1 ; Yapu, Luis P. 1

1 Universidade Federal Fluminense, Instituto de Matemática e Estatística, Rua Prof. Marcos Waldemar de Freitas Reis S/N (Campus do Gragoatá), CEP 24210-201, Niteroi, Rio de Janeiro, Brazil
@article{AIHPC_2021__38_1_23_0,
     author = {Balseiro, Paula and Yapu, Luis P.},
     title = {Conserved quantities and {Hamiltonization} of nonholonomic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {23--60},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.05.003},
     mrnumber = {4200476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.003/}
}
TY  - JOUR
AU  - Balseiro, Paula
AU  - Yapu, Luis P.
TI  - Conserved quantities and Hamiltonization of nonholonomic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 23
EP  - 60
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.003/
DO  - 10.1016/j.anihpc.2020.05.003
LA  - en
ID  - AIHPC_2021__38_1_23_0
ER  - 
%0 Journal Article
%A Balseiro, Paula
%A Yapu, Luis P.
%T Conserved quantities and Hamiltonization of nonholonomic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 23-60
%V 38
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.003/
%R 10.1016/j.anihpc.2020.05.003
%G en
%F AIHPC_2021__38_1_23_0
Balseiro, Paula; Yapu, Luis P. Conserved quantities and Hamiltonization of nonholonomic systems. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 23-60. doi : 10.1016/j.anihpc.2020.05.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.003/

[1] Balseiro, P. The jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets, Arch. Ration. Mech. Anal., Volume 214 (2014) no. 2, pp. 453-501 | MR | Zbl | DOI

[2] Balseiro, P. Hamiltonization of solids of revolution through reduction, J. Nonlinear Sci., Volume 27 (2017) no. 3, pp. 2001-2035 | MR | DOI

[3] Balseiro, P. A global version of the Koon-Marsden jacobiator formula, geometry, mechanics, and dynamics, the legacy of Jerry Marsden, Fields Inst. Commun., Volume 73 (2015), pp. 1-17 | MR | DOI

[4] Balseiro, P.; Fernandez, O.E. Reduction of nonholonomic systems in two stages, Nonlinearity, Volume 28 (2015), pp. 2873-2912 | MR | DOI

[5] Balseiro, P.; Garcia-Naranjo, L. Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal., Volume 205 (2012) no. 1, pp. 267-310 | MR | Zbl | DOI

[6] Balseiro, P.; Sansonetto, N. A geometric characterization of certain first integrals for nonholonomic systems with symmetries, SIGMA, Volume 12 (2016) no. 018 (14 pages) | MR

[7] Bates, L.; Graumann, H.; MacDonell, C. Examples of gauge conservations laws in nonholonomic systems, Rep. Math. Phys., Volume 37 (1996), pp. 295-308 | MR | Zbl | DOI

[8] Bates, L.; Śniatycki, J. Nonholonomic reduction, Rep. Math. Phys., Volume 32 (1993) no. 1, pp. 99-115 | MR | Zbl | DOI

[9] Bloch, A.M. Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, Springer-Verlag, Berlin, 2000

[10] Bloch, A.M.; Krishnapasad, P.S.; Marsden, J.E.; Murray, R.M. Nonholonomic mechanical systems with symmetry, Arch. Ration. Mech. Anal., Volume 136 (1996), pp. 21-99 | MR | Zbl | DOI

[11] Bolsinov, A.V.; Borisov, A.V.; Mamaev, I.S. Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds, Regul. Chaotic Dyn., Volume 116 (2011) no. 5, pp. 443-464 | MR | DOI

[12] Bolsinov, A.V.; Kilin, A.A.; Kazakov, A.O. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: pro or contra?, J. Geom. Phys., Volume 87 (2014), pp. 61-75 | MR | Zbl | DOI

[13] Borisov, A.V.; Mamaev, I.S. Chaplygin's ball rolling problem is Hamiltonian, Math. Notes, Volume 70 (2001) no. 5, pp. 720-723 | Zbl | MR | DOI

[14] Borisov, A.V.; Mamaev, I.S. On the history of the development of the nonholonomic dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 1, pp. 43-47 | MR | Zbl | DOI

[15] Borisov, A.V.; Mamaev, I.S. The rolling body motion of a rigid body on a plane and a sphere. Hierarchy of dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 177-200 | MR | Zbl | DOI

[16] Borisov, A.V.; Kilin, A.A.; Mamaev, I.S. Rolling of a ball on a surface. New integrals and hierarchy of dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 201-219 | MR | Zbl | DOI

[17] Cantrijn, F.; De León, M.; Martín de Diego, D. On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, Volume 12 (1999) no. 3, pp. 721-737 | MR | Zbl | DOI

[18] Cantrijn, F.; de Leon, M.; Marrero, J.C.; Martin de Diego, D. Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys., Volume 42 (1998) no. 1–2, pp. 25-45 | MR | Zbl | DOI

[19] Chaplygin, S.A. On a ball's rolling on a horizontal plane, Regular and Chaotic Dynamics, Volume 7 (2002) no. 2, pp. 131-148 (original paper in Math. Collect. Mosc. Math. Soc., 24, 1903, pp. 139-168) | MR | Zbl | DOI

[20] Chaplygin, S.A. On the theory of motion of nonholonomic systems. Theorem on the reducing multiplier, Mat. Sb., Volume 28 (1911) no. 2, pp. 303-314 (in Russian) Regul. Chaotic Dyn., 13, 4, 2008, pp. 369-376 (in English) | MR | Zbl

[21] Cortés Monforte, J. Geometric, Control and Numerical Aspects of Non-Holonomic Systems, Springer-Verlag, 2002 | MR | Zbl

[22] Cortés, J.; Martinez, S. Nonholonomic integrators, Nonlinearity, Volume 14 (2001), pp. 1365-1392 | MR | Zbl | DOI

[23] Cushman, R. Routh's sphere, Rep. Math. Phys., Volume 42 (1998) no. 1–2, pp. 47-70 | MR | Zbl | DOI

[24] Cushman, R.; Bates, L. Global Aspects of Classical Integrable Systems, Birkhäuser, 2015 | MR | Zbl

[25] Cushman, R.; Duistermaat, J.; Śniatycki, J. Geometry of Nonholonomically Constrained Systems, World Scientific, Singapore, 2010 | MR | Zbl

[26] Duistermaat, J.J.; Kolk, J.A.C. Lie Groups, Universitext, Springer-Verlag, Berlin, 2000 | MR | Zbl | DOI

[27] Eden, R.J. The quantum mechanics of non-holonomic systems, Proc. R. Soc. Lond. Ser. A, Volume 205 (1951), pp. 583-595 | MR | Zbl | DOI

[28] Eden, R.J. The Hamiltonian dynamics of non-holonomic systems, Proc. R. Soc. Lond. Ser. A, Volume 205 (1951), pp. 564-583 | MR | Zbl | DOI

[29] Ehlers, K.; Koiller, J.; Montgomery, R.; Rios, P.M. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin hamiltonization. The breath of symplectic and Poisson geometry, Prog. Math., Volume 232 (2005), pp. 75-120 | MR | Zbl | DOI

[30] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Periodic flows, rank-two Poisson structures, and nonholonomic mechanics, Regul. Chaotic Dyn., Volume 10 (2005) no. 3, pp. 267-284 | MR | Zbl | DOI

[31] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., Volume 62 (2008) no. 3, pp. 345-367 | MR | Zbl | DOI

[32] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Linear weakly Noetherian constants of motion are horizontal gauge momenta, J. Geom. Mech., Volume 4 (2012), pp. 129-136 | MR | Zbl | DOI

[33] Fedorov, Y.N.; Jovanović, B. Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces, J. Nonlinear Sci., Volume 14 (2004) no. 4, pp. 341-381 | MR | Zbl | DOI

[34] García-Naranjo, L.C. Almost Poisson brackets for nonholonomic systems on Lie groups, University of Arizona, 2007 (Ph.D. dissertation) | MR

[35] García-Naranjo, L.C. Reduction of almost Poisson brackets and hamiltonization of the Chaplygin sphere, Discrete Contin. Dyn. Syst., Ser. S, Volume 3 (2010) no. 1, pp. 37-60 | MR | Zbl

[36] García-Naranjo, L.C.; Montaldi, J. Gauge momenta as Casimir functions of nonholonomic systems, Arch. Ration. Mech. Anal., Volume 228 (2018) no. 2, pp. 563-602 | MR | DOI

[37] García-Naranjo, L.C.; Marrero, J.C. The geometry of nonholonomic Chaplygin systems, Nonlinearity, Volume 33 (2020), pp. 1297-1341 | MR | DOI

[38] García-Naranjo, L.C. Generalisation of Chaplygin's reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics, J. Phys. A, Math. Theor., Volume 52 (2019) | MR

[39] Hall, J.; Leok, M. Spectral variational integrators, Numer. Math., Volume 130 (2015) no. 4, pp. 681-740 | MR | DOI

[40] Hall, J.; Leok, M. Lie group spectral variational integrators, Found. Comput. Math., Volume 17 (2017) no. 1, pp. 199-257 | MR | DOI

[41] Hermans, J. A symmetric sphere rolling on a surface, Nonlinearity, Volume 8 (1995) no. 4, pp. 493-515 | MR | Zbl | DOI

[42] Ibort, A.; de León, M.; Marrero, J.C.; Martín de Diego, D. Dirac brackets in constrained dynamics, Fortschr. Phys., Volume 47 (1999), pp. 459-492 | MR | Zbl | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[43] Jovanović, B. Some multidimensional integrable cases of nonholonomic rigid body dynamics, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 125-132 | MR | Zbl | DOI

[44] Jovanović, B. Hamiltonization and integrability of the Chaplygin sphere in Rn , J. Nonlinear Sci., Volume 20 (2010) no. 5, pp. 569-593 | MR | Zbl | DOI

[45] Klimčík, C.; Ströbl, T. WZW-Poisson manifolds, J. Geom. Phys., Volume 43 (2002), pp. 341-344 | MR | Zbl | DOI

[46] Koiller, J. Reduction of some classical nonholonomic systems with symmetry, Arch. Ration. Mech. Anal., Volume 118 (1992), pp. 113-148 | MR | Zbl | DOI

[47] Kozlov, V.V. On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 161-176 | MR | Zbl | DOI

[48] de Leon, M.; Martin de Diego, D.; Santamaria-Merino, A. Geometric integrators and nonholonomic mechanics, J. Math. Phys., Volume 45 (2004) no. 3, pp. 1042-1064 | MR | Zbl | DOI

[49] Marle, C.M. Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., Volume 42 (1998), pp. 211-229 | MR | Zbl | DOI

[50] Marle, C.M. On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, classical and quantum integrability, Banach Cent. Publ., Volume 59 (2003), pp. 223-242 | MR | Zbl | DOI

[51] Ohsawa, T.; Bloch, A.M. Nonholonomic Hamilton–Jacobi equation and integrability, J. Geom. Mech., Volume 1 (2009), pp. 461-481 | MR | Zbl | DOI

[52] Ohsawa, T.; Fernandez, O.E.; Bloch, A.M.; Zenkov, D.V. Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1263-1291 | MR | Zbl | DOI

[53] Ramos, A. Poisson structures for reduced non–holonomic systems, J. Phys. A, Volume 37 (2004), pp. 4821-4842 | MR | Zbl | DOI

[54] Routh, E.J. Treatise on the Dynamics of a System of Rigid Bodies, Dover, New York, 1955 (Advanced Part) | MR | Zbl

[55] Ševera, P.; Weinstein, A. Poisson geometry with a 3-form background, Prog. Theor. Phys., Volume 144 (2001), pp. 145-154 | MR | Zbl | DOI

[56] van der Schaft, A.J.; Maschke, B.M. On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., Volume 34 (1994), pp. 225-233 | MR | Zbl | DOI

[57] Śniatycki, J. Orbits of families of vector fields on subcartesian spaces, Ann. Inst. Fourier, Volume 53 (2003), pp. 2257-2296 | MR | Zbl | mathdoc-id | DOI

[58] Śniatycki, J. Differential Geometry of Singular Spaces and Reduction of Symmetries, Cambridge University Press, Cambridge, 2013 | MR | Zbl | DOI

[59] Veselov, A.P.; Veselova, L.E.; Notes, Mathematical Integrable nonholonomic systems on Lie groups, Math. Notes, Volume 44 (1988) no. 5, pp. 604-619 (in Russian) (in English)

[60] Zenkov, D.V. The geometry of the Routh problem, J. Nonlinear Sci., Volume 5 (1995), pp. 503-519 | MR | Zbl | DOI

Cité par Sources :