Nontrivial solutions to Serrin's problem in annular domains
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source Numdam

We construct nontrivial bounded, real analytic domains ΩRn of the form Ω0Ω1, bifurcating from annuli, which admit a positive solution to the overdetermined boundary value problem

{Δu=1,u>0 in Ω,u=0,νu=const on Ω0,u=const,νu=const on Ω1,
where ν stands for the inner unit normal to ∂Ω. From results by Reichel [1] and later by Sirakov [2], it was known that the condition νu0 on Ω1 is sufficient for rigidity to hold, namely, the only domains which admit such a solution are annuli and solutions are radially symmetric. Our construction shows that the condition is also necessary. In addition, we show that the constructed domains are self-Cheeger.

DOI : 10.1016/j.anihpc.2020.05.001
Classification : 35N25, 37G25, 47A75, 49Q10
Keywords: Overdetermined elliptic problems, Bifurcation methods, Eigenvalues, Cheeger problem

Kamburov, Nikola 1 ; Sciaraffia, Luciano 1

1 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
@article{AIHPC_2021__38_1_1_0,
     author = {Kamburov, Nikola and Sciaraffia, Luciano},
     title = {Nontrivial solutions to {Serrin's} problem in annular domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--22},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.05.001},
     mrnumber = {4200475},
     zbl = {1462.35211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.001/}
}
TY  - JOUR
AU  - Kamburov, Nikola
AU  - Sciaraffia, Luciano
TI  - Nontrivial solutions to Serrin's problem in annular domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1
EP  - 22
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.001/
DO  - 10.1016/j.anihpc.2020.05.001
LA  - en
ID  - AIHPC_2021__38_1_1_0
ER  - 
%0 Journal Article
%A Kamburov, Nikola
%A Sciaraffia, Luciano
%T Nontrivial solutions to Serrin's problem in annular domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1-22
%V 38
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.001/
%R 10.1016/j.anihpc.2020.05.001
%G en
%F AIHPC_2021__38_1_1_0
Kamburov, Nikola; Sciaraffia, Luciano. Nontrivial solutions to Serrin's problem in annular domains. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2020.05.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.05.001/

[1] Reichel, W. Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, Pittman Research Notes in Mathematics, 1995, pp. 164-182 | MR | Zbl

[2] Sirakov, B. Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001) no. 2, pp. 135-156 | MR | Zbl | mathdoc-id | DOI

[3] Sirakov, B. Overdetermined elliptic problems in physics, Nonlinear PDE's in Condensed Matter and Reactive Flows, Springer, 2002, pp. 273-295 | Zbl | DOI

[4] Serrin, J. A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 304-318 | MR | Zbl | DOI

[5] Alexandrov, A. A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962) no. 1, pp. 303-315 | MR | Zbl | DOI

[6] Willms, N.; Gladwell, G.; Siegel, D. Symmetry theorems for some overdetermined boundary value problems on ring domains, Z. Angew. Math. Phys., Volume 45 (1994) no. 4, pp. 556-579 | MR | Zbl | DOI

[7] Khavinson, D.; Solynin, A.Y.; Vassilev, D. Overdetermined boundary value problems, quadrature domains and applications, Comput. Methods Funct. Theory, Volume 5 (2005) no. 1, pp. 19-48 | MR | Zbl | DOI

[8] Crandall, M.G.; Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971) no. 2, pp. 321-340 | MR | Zbl | DOI

[9] Giusti, E. Minimal Surfaces and Functions of Bounded Variation, vol. 2, Springer, 1984 | MR | Zbl | DOI

[10] Parini, E. An introduction to the Cheeger problem, Surv. Math. Appl., Volume 6 (2011), pp. 9-21 | MR | Zbl

[11] Leonardi, G.P. An overview on the Cheeger problem, New Trends in Shape Optimization, Springer, 2015, pp. 117-139 | MR | Zbl | DOI

[12] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1089-1111 (A Journal Issued by the Courant Institute of Mathematical Sciences) | MR | Zbl | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] Sicbaldi, P. New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 3–4, pp. 329-344 | MR | Zbl | DOI

[14] Ros, A.; Ruiz, D.; Sicbaldi, P. Solutions to overdetermined elliptic problems in nontrivial exterior domains, J. Eur. Math. Soc. (2019) | MR | Zbl | DOI

[15] Kielhöfer, H. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, vol. 156, Springer Science & Business Media, 2011 | MR | Zbl

[16] Schlenk, F.; Sicbaldi, P. Bifurcating extremal domains for the first eigenvalue of the Laplacian, Adv. Math., Volume 229 (2012) no. 1, pp. 602-632 | MR | Zbl | DOI

[17] Fall, M.M.; Minlend, I.A.; Weth, T. Unbounded periodic solutions to Serrin's overdetermined boundary value problem, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 2, pp. 737-759 | MR | Zbl | DOI

[18] Morabito, F.; Sicbaldi, P. Delaunay type domains for an overdetermined elliptic problem in Sn×R and Hn×R , ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 1, pp. 1-28 | MR | Zbl | mathdoc-id

[19] Fall, M.M.; Minlend, I.A.; Weth, T. Serrin's overdetermined problem on the sphere, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 1, p. 3 | MR | Zbl | DOI

[20] De Silva, D. Existence and regularity of monotone solutions to a free boundary problem, Am. J. Math., Volume 131 (2009) no. 2, pp. 351-378 | MR | Zbl | DOI

[21] Hauswirth, L.; Hélein, F.; Pacard, F. On an overdetermined elliptic problem, Pac. J. Math., Volume 250 (2011) no. 2, pp. 319-334 | MR | Zbl | DOI

[22] Kamburov, N. A free boundary problem inspired by a conjecture of De Giorgi, Commun. Partial Differ. Equ., Volume 38 (2013) no. 3, pp. 477-528 | MR | Zbl | DOI

[23] Khavinson, D.; Lundberg, E.; Teodorescu, R. An overdetermined problem in potential theory, Pac. J. Math., Volume 265 (2013) no. 1, pp. 85-111 | MR | Zbl | DOI

[24] Traizet, M. Classification of the solutions to an overdetermined elliptic problem in the plane, Geom. Funct. Anal., Volume 24 (2014) no. 2, pp. 690-720 | MR | Zbl | DOI

[25] Sicbaldi, P. Extremal domains of big volume for the first eigenvalue of the Laplace–Beltrami operator in a compact manifold, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 1231-1265 | MR | Zbl | mathdoc-id | DOI

[26] Del Pino, M.; Pacard, F.; Wei, J. Serrin's overdetermined problem and constant mean curvature surfaces, Duke Math. J., Volume 164 (2015) no. 14, pp. 2643-2722 | MR | Zbl | DOI

[27] Delay, E.; Sicbaldi, P. Extremal domains for the first eigenvalue in a general compact Riemannian manifold, Discrete Contin. Dyn. Syst., Ser. A, Volume 35 (2015) no. 12, pp. 5799-5825 | MR | Zbl | DOI

[28] Fall, M.M.; Minlend, I.A. Serrin's over-determined problem on Riemannian manifolds, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 371-400 | MR | Zbl | DOI

[29] Liu, Y.; Wang, K.; Wei, J. On one phase free boundary problem in Rn , 2017 (arXiv preprint) | arXiv | MR | Zbl

[30] Jerison, D.; Perera, K. Higher critical points in an elliptic free boundary problem, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1258-1294 | MR | Zbl | DOI

[31] Cavallina, L.; Magnanini, R.; Sakaguchi, S. Two-phase heat conductors with a surface of the constant flow property, 2018 (arXiv preprint) | arXiv | MR | Zbl

[32] Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1977) no. 2, pp. 373-391 | MR | Zbl | mathdoc-id

[33] Minlend, I.A. Existence of self-Cheeger sets on Riemannian manifolds, Arch. Math., Volume 109 (2017) no. 4, pp. 393-400 | MR | Zbl | DOI

Cité par Sources :