Existence of solutions for a higher-order semilinear parabolic equation with singular initial data
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1185-1209.

Voir la notice de l'article provenant de la source Numdam

We establish the existence of solutions of the Cauchy problem for a higher-order semilinear parabolic equation by introducing a new majorizing kernel. We also study necessary conditions on the initial data for the existence of local-in-time solutions and identify the strongest singularity of the initial data for the solvability of the Cauchy problem.

DOI : 10.1016/j.anihpc.2020.04.002
Keywords: Higher-order semilinear parabolic equation, Majorizing kernel, Singular initial data, Solvability

Ishige, Kazuhiro 1 ; Kawakami, Tatsuki 2 ; Okabe, Shinya 3

1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
2 Applied Mathematics and Informatics Course, Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
3 Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan
@article{AIHPC_2020__37_5_1185_0,
     author = {Ishige, Kazuhiro and Kawakami, Tatsuki and Okabe, Shinya},
     title = {Existence of solutions for a higher-order semilinear parabolic equation with singular initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1185--1209},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.04.002},
     mrnumber = {4138231},
     zbl = {1454.35222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.04.002/}
}
TY  - JOUR
AU  - Ishige, Kazuhiro
AU  - Kawakami, Tatsuki
AU  - Okabe, Shinya
TI  - Existence of solutions for a higher-order semilinear parabolic equation with singular initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1185
EP  - 1209
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.04.002/
DO  - 10.1016/j.anihpc.2020.04.002
LA  - en
ID  - AIHPC_2020__37_5_1185_0
ER  - 
%0 Journal Article
%A Ishige, Kazuhiro
%A Kawakami, Tatsuki
%A Okabe, Shinya
%T Existence of solutions for a higher-order semilinear parabolic equation with singular initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1185-1209
%V 37
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.04.002/
%R 10.1016/j.anihpc.2020.04.002
%G en
%F AIHPC_2020__37_5_1185_0
Ishige, Kazuhiro; Kawakami, Tatsuki; Okabe, Shinya. Existence of solutions for a higher-order semilinear parabolic equation with singular initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1185-1209. doi : 10.1016/j.anihpc.2020.04.002. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.04.002/

[1] Andreucci, D.; DiBenedetto, E. On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1991), pp. 363–441 | MR | Zbl | mathdoc-id

[2] Baras, P.; Kersner, R. Local and global solvability of a class of semilinear parabolic equations, J. Differ. Equ., Volume 68 (1987), pp. 238–252 | MR | Zbl | DOI

[3] Baras, P.; Pierre, M. Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | MR | Zbl | mathdoc-id | DOI

[4] Bogdan, K.; Jakubowski, T. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., Volume 271 (2007), pp. 179–198 | MR | Zbl | DOI

[5] Brandolese, L.; Karch, G. Far field asymptotics of solutions to convection equation with anomalous diffusion, J. Evol. Equ., Volume 8 (2008), pp. 307–326 | MR | Zbl | DOI

[6] Brezis, H.; Cazenave, T. A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 277–304 | MR | Zbl | DOI

[7] Caristi, G.; Mitidieri, E. Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., Volume 279 (2003), pp. 710–722 | MR | Zbl | DOI

[8] Cui, S. Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., Volume 43 (2001), pp. 293–323 | MR | Zbl

[9] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992 | MR | Zbl

[10] Ferrero, A.; Gazzola, F.; Grunau, H.-C. Decay and eventual local positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst., Volume 21 (2008), pp. 1129–1157 | MR | Zbl | DOI

[11] Friedman, A. Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964 | MR | Zbl

[12] Fujishima, Y.; Ioku, N. Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl., Volume 118 (2018), pp. 128–158 | MR | Zbl | DOI

[13] Gazzola, F.; Grunau, H.-C. Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calc. Var. Partial Differ. Equ., Volume 30 (2007), pp. 389–415 | MR | Zbl | DOI

[14] Galaktionov, V.A.; Pohozaev, S.I. Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., Volume 51 (2002), pp. 1321–1338 | MR | Zbl | DOI

[15] Giga, M.; Giga, Y.; Saal, J. Nonlinear Partial Differential Equations – Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser, Boston, 2010 | MR | Zbl | DOI

[16] Hisa, K.; Ishige, K. Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal., Volume 175 (2018), pp. 108–132 | MR | Zbl | DOI

[17] Hisa, K.; Ishige, K. Solvability of the heat equation with a nonlinear boundary condition, SIAM J. Math. Anal., Volume 51 (2019), pp. 565–594 | MR | Zbl | DOI

[18] Ikeda, M.; Sobajima, M. Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method, Nonlinear Anal., Volume 182 (2019), pp. 57–74 | MR | Zbl | DOI

[19] Ishige, K.; Kawakami, T.; Kobayashi, K. Global solutions for a nonlinear integral equation with a generalized heat kernel, Discrete Contin. Dyn. Syst., Ser. S, Volume 7 (2014), pp. 767–783 | MR | Zbl

[20] Ishige, K.; Kawakami, T.; Kobayashi, K. Asymptotics for a nonlinear integral equation with a generalized heat kernel, J. Evol. Equ., Volume 14 (2014), pp. 749–777 | MR | Zbl | DOI

[21] Ishige, K.; Miyake, N.; Okabe, S. Blow up for a fourth order parabolic equation with gradient nonlinearity, SIAM J. Math. Anal., Volume 52 (2020), pp. 927–953 | MR | Zbl | DOI

[22] Ishige, K.; Sato, R. Heat equation with a nonlinear boundary condition and uniformly local Lr spaces, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 2627–2652 | MR | Zbl

[23] Kozono, H.; Yamazaki, M. Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Commun. Partial Differ. Equ., Volume 19 (1994), pp. 959–1014 | MR | Zbl | DOI

[24] Quittner, P.; Souplet, P. Superlinear Parabolic Problems – Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[25] Robinson, J.C.; Sierżȩga, M. Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut., Volume 26 (2013), pp. 341–360 | MR | Zbl | DOI

[26] Takahashi, J. Solvability of a semilinear parabolic equation with measures as initial data, Geometric Properties for Parabolic and Elliptic PDE's, Springer Proc. Math. Sta., vol. 176, 2016, pp. 257–276 | MR

[27] Tayachi, S.; Weissler, F.B. The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values, Trans. Am. Math. Soc., Volume 366 (2014), pp. 505–530 | MR | Zbl

[28] Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | MR | Zbl | DOI

[29] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | MR | Zbl | DOI

Cité par Sources :