The Calderón problem for quasilinear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1143-1166.

Voir la notice de l'article provenant de la source Numdam

In this paper we show uniqueness of the conductivity for the quasilinear Calderón's inverse problem. The nonlinear conductivity depends, in a nonlinear fashion, of the potential itself and its gradient. Under some structural assumptions on the direct problem, a real-valued conductivity allowing a small analytic continuation to the complex plane induce a unique Dirichlet-to-Neumann (DN) map. The method of proof considers some complex-valued, linear test functions based on a point of the boundary of the domain, and a linearization of the DN map placed at these particular set of solutions.

DOI : 10.1016/j.anihpc.2020.03.004
Classification : 35R30, 35J62
Keywords: Calderón problem, Inverse problem, Quasilinear conductivity

Muñoz, Claudio 1 ; Uhlmann, Gunther 2

1 CNRS and Departamento de Ingeniería Matemática DIM, Universidad de Chile, Chile
2 Department of Mathematics, University of Washington, Box 354350 Seattle, WA 98195, USA
@article{AIHPC_2020__37_5_1143_0,
     author = {Mu\~noz, Claudio and Uhlmann, Gunther},
     title = {The {Calder\'on} problem for quasilinear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1143--1166},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.03.004},
     mrnumber = {4138229},
     zbl = {1457.35093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.004/}
}
TY  - JOUR
AU  - Muñoz, Claudio
AU  - Uhlmann, Gunther
TI  - The Calderón problem for quasilinear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1143
EP  - 1166
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.004/
DO  - 10.1016/j.anihpc.2020.03.004
LA  - en
ID  - AIHPC_2020__37_5_1143_0
ER  - 
%0 Journal Article
%A Muñoz, Claudio
%A Uhlmann, Gunther
%T The Calderón problem for quasilinear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1143-1166
%V 37
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.004/
%R 10.1016/j.anihpc.2020.03.004
%G en
%F AIHPC_2020__37_5_1143_0
Muñoz, Claudio; Uhlmann, Gunther. The Calderón problem for quasilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1143-1166. doi : 10.1016/j.anihpc.2020.03.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.004/

[1] Astala, K.; Päivärinta, L. Calderón's inverse conductivity problem in the plane, Ann. Math., Volume 163 (2006), pp. 265–299 | MR | Zbl | DOI

[2] Barton, A. Elliptic partial differential equations with complex coefficients, U. of Chicago, Nov. 2009 (Ph.D. Thesis) | arXiv | MR

[3] Calderón, A.P. Seminar on Numerical Analysis and Its Applications to Continuum Physics, On an inverse boundary value problem, Soc. Brasil. Mat., Rio de Janeiro (1980), pp. 65–73 (Río de Janeiro, 1980) | MR | Zbl

[4] Gilbarg, D.; Trudinger, N. Ellpitic Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 (ISSN 1431-0821) | MR

[5] Gunning, R.C. Introduction to Holomorphic Functions of Several Variables, vol. I, CRC Press, May 1990 | MR | Zbl

[6] Hervas, D.; Sun, Z. An inverse boundary value problem for quasilinear elliptic operators, Commun. Partial Differ. Equ., Volume 27 (2002) no. 11–12, pp. 2449–2490 | MR | Zbl

[7] Hofmann, S.; Kenig, C.E.; Mayboroda, Svitlana; Pipher, J. Square function/non tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., Volume 28 (2015), pp. 483–529 | MR | Zbl

[8] Isakov, V. On uniqueness in inverse problems for semilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 124 (1993), pp. 1–12 | MR | Zbl | DOI

[9] Ladyzenskaja, O.A.; Ural'ceva, N.N. Equations aux dérivées partielles de type elliptique, Dunod, Paris, 1968 | Zbl

[10] Nachman, A. Reconstructions from boundary measurements, Ann. Math., Volume 128 (1988), pp. 531–576 | MR | Zbl | DOI

[11] Sylvester, J.; Uhlmann, G. A uniqueness theorem for an inverse boundary value problem in electrical prospection, Commun. Pure Appl. Math., Volume 39 (1986), pp. 92–112 | MR | Zbl | DOI

[12] Sylvester, J.; Uhlmann, G. A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), Volume 125 (1987) no. 1, pp. 153–169 | MR | Zbl | DOI

[13] Sun, Z. On a quasilinear inverse boundary value problem, Math. Z., Volume 221 (1996), pp. 293–305 | MR | Zbl

[14] Sun, Z. Conjectures in inverse boundary value problems for quasilinear elliptic equations, CUBO, Volume 7 (2005), pp. 65–73 | MR | Zbl

[15] Sun, Z.; Uhlmann, G. Inverse problems in quasilinear anisotropic media, Am. J. Math., Volume 119 (1997), pp. 771–797 | MR | Zbl

[16] Uhlmann, G. Electrical impedance tomography and Calderón's problem, Inverse Probl., Volume 25 (2009) no. 12 | MR | Zbl | DOI

Cité par Sources :