Voir la notice de l'article provenant de la source Numdam
We construct infinitely many incompressible Sobolev vector fields on the periodic domain for which uniqueness of solutions to the transport equation fails in the class of densities , provided . The same result applies to the transport-diffusion equation, if, in addition, .
Modena, Stefano 1 ; Sattig, Gabriel 2
@article{AIHPC_2020__37_5_1075_0, author = {Modena, Stefano and Sattig, Gabriel}, title = {Convex integration solutions to the transport equation with full dimensional concentration}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1075--1108}, publisher = {Elsevier}, volume = {37}, number = {5}, year = {2020}, doi = {10.1016/j.anihpc.2020.03.002}, mrnumber = {4138227}, zbl = {1458.35363}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.002/} }
TY - JOUR AU - Modena, Stefano AU - Sattig, Gabriel TI - Convex integration solutions to the transport equation with full dimensional concentration JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1075 EP - 1108 VL - 37 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.002/ DO - 10.1016/j.anihpc.2020.03.002 LA - en ID - AIHPC_2020__37_5_1075_0 ER -
%0 Journal Article %A Modena, Stefano %A Sattig, Gabriel %T Convex integration solutions to the transport equation with full dimensional concentration %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1075-1108 %V 37 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.002/ %R 10.1016/j.anihpc.2020.03.002 %G en %F AIHPC_2020__37_5_1075_0
Modena, Stefano; Sattig, Gabriel. Convex integration solutions to the transport equation with full dimensional concentration. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1075-1108. doi : 10.1016/j.anihpc.2020.03.002. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.03.002/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | MR | Zbl | DOI
[2] Well posedness of ODE's and continuity equations with nonsmooth vector fields, and applications, Rev. Mat. Complut., Volume 30 (2017) no. 3, pp. 427–450 | MR | Zbl | DOI
[3] A uniqueness result for the decomposition of vector fields in , Invent. Math. (2019) | MR | Zbl
[4] Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, 2018 | arXiv
[5] Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., Volume 72 (2019) no. 2, pp. 229–274 | MR | Zbl | DOI
[6] Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. (2019) | MR | Zbl | DOI
[7] Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 12, pp. 1168–1173 | MR | Zbl | DOI
[8] A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation, 2018 | arXiv
[9] Stationary and discontinuous weak solutions of the Navier-Stokes equations, 2019 | arXiv
[10] Non-uniqueness and -principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 471–514 | MR | Zbl | DOI
[11] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 4, pp. 249–252 | MR | Zbl | DOI
[12] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | MR | Zbl | DOI
[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 | MR | Zbl | DOI
[14] A Proof of Onsager's Conjecture, Ann. Math., Volume 188 (2018) no. 3, pp. 871–963 | MR | Zbl | DOI
[15] Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations – On Sharpness of J.-L. Lions Exponent, 2018 | arXiv | MR
[16] Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, 2018 | arXiv | MR
[17] Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE, Volume 4 (2018) no. 2 | MR | Zbl | DOI
[18] Non-renormalized solutions to the continuity equation, Calc. Var. Partial Differ. Equ., Volume 58 (2019), pp. 208 | MR | Zbl | DOI
[19] A quantitative theory for the continuity equation, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1837–1850 | MR | Zbl | mathdoc-id
Cité par Sources :