Well-posedness issues on the periodic modified Kawahara equation
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 373-416.

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the Cauchy problem of the modified Kawahara equation (posed on T), which is well-known as a model of capillary-gravity waves in an infinitely long canal over a flat bottom in a long wave regime [26]. We show in this paper some well-posedness results, mainly the global well-posedness in L2(T). The proof basically relies on the idea introduced in Takaoka-Tsutsumi's works [60, 69], which weakens the non-trivial resonance in the cubic interactions (a kind of smoothing effect) for the local result, and the global well-posedness result immediately follows from L2 conservation law. An immediate application of Takaoka-Tsutsumi's idea is available only in Hs(T), s>0, due to the lack of L4-Strichartz estimate for arbitrary L2 data, a slight modification, thus, is needed to attain the local well-posedness in L2(T). This is the first low regularity (global) well-posedness result for the periodic modified Kwahara equation, as far as we know. A direct interpolation argument ensures the unconditional uniqueness in Hs(T), s>12, and as a byproduct, we show the weak ill-posedness below H12(T), in the sense that the flow map fails to be uniformly continuous.

DOI : 10.1016/j.anihpc.2019.09.002
Classification : 35Q53, 76B15, 35G25
Keywords: Modified Kawahara equation, Initial value problem, Global well-posedness, Unconditional uniqueness, Weak ill-posedness

Kwak, Chulkwang 1, 2

1 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile
2 Institute of Pure and Applied Mathematics, Chonbuk National University, Republic of Korea
@article{AIHPC_2020__37_2_373_0,
     author = {Kwak, Chulkwang},
     title = {Well-posedness issues on the periodic modified {Kawahara} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {373--416},
     publisher = {Elsevier},
     volume = {37},
     number = {2},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.09.002},
     mrnumber = {4072803},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.002/}
}
TY  - JOUR
AU  - Kwak, Chulkwang
TI  - Well-posedness issues on the periodic modified Kawahara equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 373
EP  - 416
VL  - 37
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.002/
DO  - 10.1016/j.anihpc.2019.09.002
LA  - en
ID  - AIHPC_2020__37_2_373_0
ER  - 
%0 Journal Article
%A Kwak, Chulkwang
%T Well-posedness issues on the periodic modified Kawahara equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 373-416
%V 37
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.002/
%R 10.1016/j.anihpc.2019.09.002
%G en
%F AIHPC_2020__37_2_373_0
Kwak, Chulkwang. Well-posedness issues on the periodic modified Kawahara equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 373-416. doi : 10.1016/j.anihpc.2019.09.002. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.002/

[1] Abramyan, L.; Stepanyants, Y. The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP, Volume 61 (1985) no. 5, pp. 963–966

[2] Babin, A.; Ilyin, A.; Titi, E. On the regularization mechanism for the periodic Korteweg-de Vries equation, Commun. Pure Appl. Math., Volume 64 (2011) no. 5, pp. 591–648 | MR | Zbl | DOI

[3] Benney, D.J. A general theory for interactions between short and long waves, Stud. Appl. Math., Volume 56 (1977), pp. 81–94 | MR | Zbl | DOI

[4] Bejenaru, J.; Tao, T. Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., Volume 233 (2006), pp. 228–259 | MR | Zbl | DOI

[5] Biswas, A. Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett., Volume 22 (2009) no. 2, pp. 208–210 | MR | Zbl | DOI

[6] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I, II, Geom. Funct. Anal., Volume 3 (1993), pp. 107–156 (209–262) | MR | Zbl | DOI

[7] Bourgain, J. Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Int. Math. Res. Not. (1994) no. 2, pp. 79–90 | MR | Zbl | DOI

[8] Boyd, J.P. Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation, Physica D, Volume 48 (1991), pp. 129–146 | Zbl

[9] Burq, N.; Gérard, P.; Tzvetkov, N. An instability property of the nonlinear Schrödinger equation on Sd , Math. Res. Lett., Volume 9 (2002) no. 2–3, pp. 323–335 | MR | Zbl

[10] Capistrano Filho, R.; Cavalcante, M. Stabilization and control for the biharmonic Schrödinger equation (preprint) | arXiv | MR

[11] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003 (xiv+323 pp.) | MR | Zbl

[12] Chen, W.; Guo, Z. Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, J. Anal. Math., Volume 114 (2011), pp. 121–156 | MR | Zbl | DOI

[13] Chen, W.; Li, J.; Miao, C.; Wu, J. Low regularity solutions of two fifth-order KdV type equations, J. Anal. Math., Volume 107 (2009), pp. 221–238 | MR | Zbl | DOI

[14] Christ, M.; Colliander, J.; Tao, T. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235–1293 | MR | Zbl | DOI

[15] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on R and T , J. Am. Math. Soc., Volume 16 (2003), pp. 705–749 | MR | Zbl | DOI

[16] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Symplectic nonsqueezing of the Korteweg-de Vries flow, Acta Math., Volume 195 (2005), pp. 197–252 | MR | Zbl | DOI

[17] Cui, S.; Deng, D.; Tao, S. Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data, Acta Math. Sin. Engl. Ser., Volume 22 (2006) no. 5, pp. 1457–1466 | MR | Zbl

[18] Cui, S.; Tao, S. Strichartz estimates for dispersive equations and solvability of the Kawahara equation, J. Math. Anal. Appl., Volume 304 (2005) no. 2, pp. 683–702 | MR | Zbl

[19] Deconinck, B.; Trichtchenko, O. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs, Discrete Contin. Dyn. Syst., Ser. A, Volume 37 (2017), pp. 1323–1358 | MR

[20] Furioli, G.; Planchon, F.; Terraneo, E. Harmonic Analysis at Mount, Unconditional Well-Posedness for Semilinear Schrödinger and Wave Equations in Hs (Contemporary Mathematics), Volume vol. 320, American Mathematical Society, Providence, RI (2003), pp. 147–156 Holyoke (South Hadley, MA 2001) | MR | Zbl

[21] Ginibre, J.; Tsutsumi, Y.; Velo, G. On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384–436 | MR | Zbl | DOI

[22] Gorshkov, K.A.; Papko, V.V. The structure of solitary waves in media with anomalously small dispersion, Sov. Phys. JETP, Volume 46 (1977), pp. 92–96

[23] Gorsky, J.; Himonas, A. Well-posedness of KdV with higher dispersion, Math. Comput. Simul., Volume 80 (2009) no. 1, pp. 173–183 | MR | Zbl | DOI

[24] Grimshaw, R.; Joshi, N. Weakly nonlocal waves in a singularly perturbed Korteweg-de Vries equation, SIAM J. Appl. Math., Volume 55 (1995) no. 1, pp. 124–135 | MR | Zbl | DOI

[25] Guo, Z.; Kwon, S.; Oh, T. Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., Volume 322 (2013) no. 1, pp. 19–48 | MR | Zbl

[26] Hasimoto, H. Water waves, Kagaku, Volume 40 (1970), pp. 401–408 (Japanese)

[27] Hirayama, H. Local well-posedness for the periodic higher order KdV type equations, Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 6, pp. 677–693 | MR | Zbl | DOI

[28] Hong, S.; Kwak, C. Global well-posedness and nonsqueezing property for the higher-order KdV-type flow, J. Math. Anal. Appl., Volume 441 (2016) no. 1, pp. 140–166 | MR | DOI

[29] Hunter, J.K.; Scheurle, J. Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, Volume 32 (1988), pp. 253–268 | MR | Zbl | DOI

[30] Iguchi, T. A long wave approximation for capillary-gravity waves and the Kawahara equations, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 2 (2007), pp. 179–220 | MR | Zbl

[31] Il'ichev, A.T.; Semenov, A.Yu. Stability of solitary waves in dispersive media described by a fifth order evolution equation, Theor. Comput. Fluid Dyn., Volume 3 (1992), pp. 307–326 | Zbl | DOI

[32] Jia, Y.; Huo, Z. Well-posedness for the fifth-order shallow water equations, J. Differ. Equ., Volume 246 (2009), pp. 2448–2467 | MR | Zbl

[33] Kabakouala, A.; Molinet, L. On the stability of the solitary waves to the (generalized) Kawahara equation, J. Math. Anal. Appl., Volume 457 (2018) no. 1, pp. 478–497 | MR | DOI

[34] Kakutani, T.; Ono, H. Weak non-linear hydromagnetic waves in a cold collision free plasma, J. Phys. Soc. Jpn., Volume 26 (1969), pp. 1305–1318 | DOI

[35] Karpman, V.I.; Belashov, V.Yu. Dynamics of two-dimensional solitons in weakly dispersive media, Phys. Lett. A, Volume 154 (1991), pp. 131–139

[36] Kato, T. On nonlinear Schrödinger equations II. Hs-solutions and unconditional well-posedness, J. Anal. Math., Volume 67 (1995), pp. 281–306 | MR | Zbl | DOI

[37] Kato, T. Local well-posedness for Kawahara equation, Adv. Differ. Equ., Volume 16 (2011) no. 3–4, pp. 257–287 | MR | Zbl

[38] Kato, T. Low regularity well-posedness for the periodic Kawahara equation, Differ. Integral Equ., Volume 25 (2012) no. 11–12, pp. 1011–1036 | MR | Zbl

[39] Kato, T. Global well-posedness for the Kawahara equation with low regularity, Commun. Pure Appl. Anal., Volume 12 (2013) no. 3, pp. 1321–1339 | MR | Zbl

[40] Kawahara, T. Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn., Volume 33 (1972), pp. 260–264 | DOI

[41] Kenig, C.E.; Ponce, G.; Vega, L. A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 573–603 | MR | Zbl | DOI

[42] Kichenassamy, S.; Olver, P. Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal., Volume 23 (1992) no. 5, pp. 1141–1166 | MR | Zbl | DOI

[43] Killip, R.; Visan, M.; Zhang, X. Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on R2 (preprint) | arXiv | MR

[44] Kililp, R.; Visan, M.; Zhang, X. Symplectic Non-Squeezing for the Cubic NLS on the Line, Int. Math. Res. Not., Volume 2019 (2019) no. 5, pp. 1312–1332 | MR

[45] Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., Volume 39 (1895), pp. 422–443 | MR | JFM | DOI

[46] Kuksin, S. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 531–552 | MR | Zbl | DOI

[47] Kwak, C. Local well-posedness for the fifth-order KdV equations on T , J. Differ. Equ., Volume 260 (2016), pp. 7683–7737 | MR | DOI

[48] Kwak, C. Periodic fourth-order cubic NLS: local well-posedness and non-squeezing property, J. Math. Anal. Appl., Volume 461 (2018) no. 2, pp. 1327–1364 | MR | DOI

[49] Kwak, C. Low regularity Cauchy problem for the fifth-order modified KdV equations on T , J. Hyperbolic Differ. Equ., Volume 15 (2018) no. 3, pp. 463–557 | MR | DOI

[50] Kwon, S.; Oh, T. Unconditional well-posedness of mKdV, Int. Math. Res. Not., Volume 15 (2012), pp. 3509–3534 | Zbl

[51] Kwon, S.; Oh, T.; Yoon, H. Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse (2019) (in press) | MR | Zbl | mathdoc-id

[52] Levandosky, S.P. A stability analysis of fifth-order water wave models, Physica D, Volume 125 (1999) no. 3–4, pp. 222–240 | MR | Zbl

[53] Levandosky, S.P. Stability of solitary waves of a fifth-order water wave model, Physica D, Volume 227 (2007) no. 2, pp. 162–172 | MR | Zbl | DOI

[54] Masmoudi, N.; Nakanishi, K. From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 4, pp. 975–1008 | MR | Zbl | DOI

[55] Mendelson, D. Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on T3 , J. Funct. Anal., Volume 272 (2017) no. 7, pp. 3019–3092 | MR | Zbl | DOI

[56] Miyaji, T.; Tsutsumi, Y. Local well-posedness of the NLS equation with third order dispersion in negative Sobolev spaces, Differ. Integral Equ., Volume 31 (2018), pp. 111–132 | MR | Zbl

[57] Molinet, L.; Pilod, D.; Vento, S. On unconditional well-posedness for the periodic modified Korteweg-de Vries equation, J. Math. Soc. Jpn., Volume 71 (2019) no. 1, pp. 147–201 | MR | Zbl | DOI

[58] Molinet, L.; Pilod, D.; Vento, S. Unconditional uniqueness for the modified Korteweg-de Vries equation on the line, Rev. Mat. Iberoam. (2019) (in press) | MR

[59] Mosincat, R.; Yoon, H. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line (preprint) | arXiv | MR

[60] Nakanishi, K.; Takaoka, H.; Tsutsumi, Y. Local well-posedness in low regularity of the mKdV equation with periodic boundary condition, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 4, pp. 1635–1654 | MR | Zbl | DOI

[61] Natali, F. A note on the stability for Kawahara-KdV type equations, Appl. Math. Lett., Volume 23 (2010) no. 5, pp. 591–596 | MR | Zbl | DOI

[62] T. Oh, Periodic L4-Strichartz estimate for KdV, unpublished note.

[63] Oh, T.; Wang, Y. Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, Volume 6 (2018), pp. E5 | MR | Zbl | DOI

[64] Okamoto, M. Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., Volume 157 (2017), pp. 44–61 | MR | Zbl | DOI

[65] Pomeau, Y.; Ramani, A.; Grammaticos, B. Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D, Volume 31 (1988), pp. 127–134 | MR | Zbl | DOI

[66] Roumégoux, D. A symplectic non-squeezing theorem for BBM equation, Dyn. Partial Differ. Equ., Volume 7 (2010) no. 4, pp. 289–305 | MR | Zbl | DOI

[67] Schneider, G.; Wayne, C.E. The rigorous approximation of long-wavelength capillary-gravity waves, Arch. Ration. Mech. Anal., Volume 162 (2002), pp. 247–285 | MR | Zbl | DOI

[68] Staffilani, G. On solutions for periodic generalized KdV equations, Int. Math. Res. Not., Volume 18 (1997), pp. 899–917 | MR | Zbl

[69] Takaoka, H.; Tsutsumi, Y. Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not. (2004), pp. 3009–3040 | MR | Zbl | DOI

[70] Tao, T. Multilinear weighted convolution of L2 functions and applications to nonlinear dispersive equations, Am. J. Math., Volume 123 (2001) no. 5, pp. 839–908 | MR | Zbl

[71] Tao, T. Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math., vol. 106, 2006 | MR | Zbl | DOI

[72] Tao, T. Global existence and uniqueness results for weak solutions of the focusing mass critical non-linear Schrödinger equation, Ann. Part. Diff. Eq., Volume 2 (2009) no. 1, pp. 61–81 | MR | Zbl

[73] Trichtchenko, O.; Deconinck, B.; Kollár, R. Stability of periodic traveling wave solutions to the Kawahara equation, SIAM J. Appl. Dyn. Syst., Volume 17 (2018) no. 4, pp. 2761–2783 | MR | Zbl | DOI

[74] Wang, H.; Cui, S.; Deng, D. Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin. Engl. Ser., Volume 23 (2007) no. 8, pp. 1435–1446 | MR | Zbl | DOI

[75] Win, Y.Y.S. Unconditional uniqueness of the derivative nonlinear Schrödinger equation in energy space, J. Math. Kyoto Univ., Volume 48 (2008) no. 3, pp. 683–697 | MR | Zbl

[76] Yamamoto, Y. On gravity-surface tension waves in liquids, J. Phys. Soc. Jpn., Volume 55 (1986), pp. 1523–1527 | DOI

[77] Yan, W.; Li, Y. Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012) no. 2, pp. 710–716 | MR | Zbl

[78] Yan, W.; Li, Y.; Yang, X. The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity, Math. Comput. Model., Volume 54 (2011) no. 5/6, pp. 1252–1261 | MR | Zbl

[79] Zhou, Y. Uniqueness of weak solution of the KdV equation, Int. Math. Res. Not., Volume 6 (1997), pp. 271–283 | MR | Zbl

Cité par Sources :