Voir la notice de l'article provenant de la source Numdam
We study the Ginzburg–Landau equations on Riemann surfaces of arbitrary genus. In particular, we
Nous étudions les équations de Ginzburg–Landau définies sur des surfaces de Riemann de genre arbitraire. En particulier,
Chouchkov, D. 1 ; Ercolani, N.M. 2 ; Rayan, S. 3 ; Sigal, I.M. 1
@article{AIHPC_2020__37_1_79_0, author = {Chouchkov, D. and Ercolani, N.M. and Rayan, S. and Sigal, I.M.}, title = {Ginzburg{\textendash}Landau equations on {Riemann} surfaces of higher genus}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {79--103}, publisher = {Elsevier}, volume = {37}, number = {1}, year = {2020}, doi = {10.1016/j.anihpc.2019.04.002}, mrnumber = {4049917}, zbl = {1475.30109}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.04.002/} }
TY - JOUR AU - Chouchkov, D. AU - Ercolani, N.M. AU - Rayan, S. AU - Sigal, I.M. TI - Ginzburg–Landau equations on Riemann surfaces of higher genus JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 79 EP - 103 VL - 37 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.04.002/ DO - 10.1016/j.anihpc.2019.04.002 LA - en ID - AIHPC_2020__37_1_79_0 ER -
%0 Journal Article %A Chouchkov, D. %A Ercolani, N.M. %A Rayan, S. %A Sigal, I.M. %T Ginzburg–Landau equations on Riemann surfaces of higher genus %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 79-103 %V 37 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.04.002/ %R 10.1016/j.anihpc.2019.04.002 %G en %F AIHPC_2020__37_1_79_0
Chouchkov, D.; Ercolani, N.M.; Rayan, S.; Sigal, I.M. Ginzburg–Landau equations on Riemann surfaces of higher genus. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 79-103. doi : 10.1016/j.anihpc.2019.04.002. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.04.002/
[1] Complex Analysis, McGraw-Hill, New York, 1979 | MR | Zbl
[2] The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. Ser. A, Volume 308 (1983) no. 1505, pp. 523–615 | MR | Zbl
[3] Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 1–17 | MR | Zbl | DOI
[4] Special metrics and stability for holomorphic bundles with global sections, J. Differ. Geom., Volume 33 (1991) no. 1, pp. 169–213 | MR | Zbl | DOI
[5] Moduli of stable pairs for holomorphic bundles over Riemann surfaces, Int. J. Math., Volume 2 (1991) no. 5, pp. 477–513 | MR | Zbl | DOI
[6] Differential Geometry: Geometry in Mathematical Physics and Related Topics, Nonabelian vortices and a new Yang–Mills–Higgs energy (Proc. Sympos. Pure Math.), Volume vol. 54, Part 2, Amer. Math. Soc., Providence, RI (1993), pp. 85–98 (Los Angeles, CA, 1990) | MR | Zbl
[7] Li Chen, I.M. Sigal, P. Smyrnelis, On Abrikosov lattice solutions of the Ginzburg–Landau equations, 2016, arXiv, e-print. | MR
[8] A new proof of a theorem of Narasimhan and Seshadri, J. Differ. Geom., Volume 18 (1983), pp. 269–277 | MR | Zbl | DOI
[9] Riemann Surfaces, Oxford University Press, 2011 | Zbl | DOI
[10] Geometry of Four-Manifolds, Oxford University Press, 1990 | MR | Zbl | DOI
[11] Riemann Surfaces, Springer-Verlag, New York, 1992 | MR | Zbl | DOI
[12] Lectures on Riemann Surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York, 1991 | MR
[13] A direct existence proof for the vortex equations over a compact Riemann surface, Bull. Lond. Math. Soc., Volume 26 (1994) no. 1, pp. 88–96 | MR | Zbl | DOI
[14] Principles of Algebraic Geometry, Wiley, 1994 | MR | Zbl | DOI
[15] Riemann Surfaces and Generalized Theta Functions, Springer, 1976 | MR | Zbl | DOI
[16] Lectures on Riemann Surfaces, Princeton University Press, 1967 | MR | Zbl
[17] Lectures on Modular Forms, Princeton University Press, 1962 | MR | Zbl | DOI
[18] Complex Geometry, Springer, 2005 | MR | Zbl
[19] Vortices and Monopoles, Birkhäusen, 1981 | MR | Zbl
[20] Compact Riemann Surfaces, 2006 | MR | Zbl
[21] Differential Geometry of Complex Vector Bundles, Princeton University Press, New Jersey, 1987 | MR | Zbl | DOI
[22] Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv., Volume 32 (1977), pp. 185–213 | MR | Zbl | DOI
[23] Vortices on hyperbolic surfaces, J. Phys. A, Volume 43 (2010) no. 43 | MR | Zbl | DOI
[24] Topological Solitons, Cambridge University Press, Cambridge, 2004 | MR | Zbl | DOI
[25] Irreducible Ginzburg–Landau fields in dimension 2 | arXiv
[26] Renormalized energy for Ginzburg–Landau vortices on closed surfaces, Math. Z., Volume 225 (1997), pp. 1–34 | MR | Zbl
[27] Stability of Abrikosov lattices under gauge-periodic perturbations, Nonlinearity, Volume 25 (2012), pp. 1–24 (arXiv) | MR | Zbl | DOI
[28] Magnetic vortices, Abrikosov lattices and automorphic functions, Mathematical and Computational Modelling (With Applications in Natural and Social Sciences, Engineering and the Arts), Wiley, 2015 | arXiv | MR
[29] Abrikosov lattice solutions of the Ginzburg–Landau equations, Contemp. Math., Volume 535 (2011), pp. 195–213 | MR | Zbl | DOI
[30] Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, vol. 65, Springer, 2000 | MR | Zbl
[31] From superconductors and four-manifolds to weak interactions, Bull. Am. Meteorol. Soc., Volume 44 (2007), pp. 361–391 | MR | Zbl
Cité par Sources :