Mass transportation on sub-Riemannian structures of rank two in dimension four
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 837-860.

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.

DOI : 10.1016/j.anihpc.2018.10.003
Keywords: Sub-Riemannian geometry, Optimal transport problem

Badreddine, Z. 1, 2

1 Université Côte d'Azur, Inria, CNRS, LJAD, France
2 Université de Bourgogne, Institut de Mathématiques de Bourgogne, France
@article{AIHPC_2019__36_3_837_0,
     author = {Badreddine, Z.},
     title = {Mass transportation on {sub-Riemannian} structures of rank two in dimension four},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {837--860},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.003},
     zbl = {1429.49046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.003/}
}
TY  - JOUR
AU  - Badreddine, Z.
TI  - Mass transportation on sub-Riemannian structures of rank two in dimension four
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 837
EP  - 860
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.003/
DO  - 10.1016/j.anihpc.2018.10.003
LA  - en
ID  - AIHPC_2019__36_3_837_0
ER  - 
%0 Journal Article
%A Badreddine, Z.
%T Mass transportation on sub-Riemannian structures of rank two in dimension four
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 837-860
%V 36
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.003/
%R 10.1016/j.anihpc.2018.10.003
%G en
%F AIHPC_2019__36_3_837_0
Badreddine, Z. Mass transportation on sub-Riemannian structures of rank two in dimension four. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 837-860. doi : 10.1016/j.anihpc.2018.10.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.003/

[1] Agrachev, A.; Lee, P. Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6019–6047 | Zbl | DOI

[2] Ambrosio, L.; Rigot, D. Optimal transportation on the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261–301 | Zbl | DOI

[3] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375–417 | Zbl | DOI

[4] Belotto da Silva, A.; Rifford, L. The Sard conjecture on Martinet surfaces, Duke Math. J., Volume 167 (2018) no. 8, pp. 1433–1471 | Zbl | DOI

[5] Cavalletti, F.; Huesmann, M. Existence and uniqueness of optimal transport maps, Ann. IHP(C) Nonlinear Anal., Volume 32 (2015) no. 6, pp. 1367–1377 | Zbl | mathdoc-id | MR

[6] Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser, 2004 | Zbl | DOI

[7] Figalli, A.; Rifford, L. Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 124–159 | Zbl | DOI

[8] Kantorovitch, L. On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, Volume 37 (1942), pp. 199–201 | Zbl

[9] Liu, W.; Sussmann, H.J. Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Am. Math. Soc., Volume 118 (1995), pp. 564 | Zbl

[10] McCann, R. Polar factorization of maps in Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589–608 | Zbl | DOI

[11] Monge, G. Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris (1781), pp. 666–704

[12] Monti, R.; Serra Cassano, F. Surface measures in Carnot–Caratheodory spaces, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 3, pp. 339–376 | Zbl | DOI

[13] Rifford, L. Sub-Riemannian geometry and optimal transport, Springer Briefs in Mathematics, 2014 (140 pp) | Zbl | DOI

[14] Sussmann, H.J. A Cornucopia of Abnormal Sub-Riemannian Minimizers, Birkhäuser, 1996, pp. 341–364

[15] Villani, C. Topics in Mass Transportation, Graduate Studies in Mathematics Surveys, vol. 58, American Mathematical Society, Providence, RI, 2003 | Zbl

[16] Villani, C. Optimal Transport, Old and New, Springer, Berlin, 2008 | Zbl

Cité par Sources :