Voir la notice de l'article provenant de la source Numdam
We derive Hessian estimates for convex solutions to quadratic Hessian equation by compactness argument.
Nous dérivons des estimations de Hessian pour des solutions convexes à l'équation de Hessian quadratique par argument de compacité.
@article{AIHPC_2019__36_2_451_0, author = {McGonagle, Matt and Song, Chong and Yuan, Yu}, title = {Hessian estimates for convex solutions to quadratic {Hessian} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {451--454}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.07.001}, mrnumber = {3913193}, zbl = {1423.35107}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.07.001/} }
TY - JOUR AU - McGonagle, Matt AU - Song, Chong AU - Yuan, Yu TI - Hessian estimates for convex solutions to quadratic Hessian equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 451 EP - 454 VL - 36 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.07.001/ DO - 10.1016/j.anihpc.2018.07.001 LA - en ID - AIHPC_2019__36_2_451_0 ER -
%0 Journal Article %A McGonagle, Matt %A Song, Chong %A Yuan, Yu %T Hessian estimates for convex solutions to quadratic Hessian equation %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 451-454 %V 36 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.07.001/ %R 10.1016/j.anihpc.2018.07.001 %G en %F AIHPC_2019__36_2_451_0
McGonagle, Matt; Song, Chong; Yuan, Yu. Hessian estimates for convex solutions to quadratic Hessian equation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 451-454. doi : 10.1016/j.anihpc.2018.07.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.07.001/
[1] Liouville property and regularity of a Hessian quotient equation, Am. J. Math., Volume 125 (2003) no. 2, pp. 301–316 | MR | Zbl
[2] A constant rank theorem for solutions of fully nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 12, pp. 1769–1791 | MR | Zbl
[3] A Liouville problem for the sigma-2 equation, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 2, pp. 659–664 | MR | Zbl
[4] A variational theory of the Hessian equation, Commun. Pure Appl. Math., Volume 54 (2001), pp. 1029–1064 | MR | Zbl
[5] Interior regularity of convex solutions to prescribing scalar curvature equations, 2017 (preprint) | arXiv | MR | Zbl
[6] On elliptic Monge–Ampère equations and Weyl's embedding problem, J. Anal. Math., Volume 7 (1959), pp. 1–52 | MR | Zbl
[7] A priori limitations for solutions of Monge–Ampère equations. II, Trans. Am. Math. Soc., Volume 41 (1937), pp. 365–374 | MR | Zbl
[8] The Minkowski Multidimensional Problem, Scripta Series in Mathematics, V. H. Winston & Sons/Halsted Press [John Wiley & Sons], Washington, DC/New York–Toronto–London, 1978 (translated from the Russian by Vladimir Oliker. Introduction by Louis Nirenberg) | MR | Zbl
[9] Interior Hessian estimates for sigma-2 equations, 2017 (preprint) | arXiv
[10] Weak solutions of Hessian equations, Commun. Partial Differ. Equ., Volume 22 (1997) no. 7–8, pp. 1251–1261 | MR | Zbl
[11] Some interior regularity results for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 11 (2000), pp. 1–31 | MR | Zbl
[12] An interior second derivative bound for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 12 (2001), pp. 417–431 | MR | Zbl
[13] Hessian estimates for the sigma-2 equation in dimension three, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 305–321 | MR | Zbl
Cité par Sources :