Interior regularity for fractional systems
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 165-180.

Voir la notice de l'article provenant de la source Numdam

We study the regularity of solutions of elliptic fractional systems of order 2s, s(0,1), where the right hand side f depends on a nonlocal gradient and has the same scaling properties as the nonlocal operator. Under some structural conditions on the system we prove interior Hölder estimates in the spirit of [1]. Our results are stable in s allowing us to recover the classic results for elliptic systems due to S. Hildebrandt and K. Widman [11] and M. Wiegner [19].

DOI : 10.1016/j.anihpc.2018.04.004
Keywords: A priori estimates, Nonlocal semilinear systems, Fractional harmonic maps
@article{AIHPC_2019__36_1_165_0,
     author = {Caffarelli, Luis and D\'avila, Gonzalo},
     title = {Interior regularity for fractional systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {165--180},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.04.004},
     mrnumber = {3906869},
     zbl = {1411.35111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.04.004/}
}
TY  - JOUR
AU  - Caffarelli, Luis
AU  - Dávila, Gonzalo
TI  - Interior regularity for fractional systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 165
EP  - 180
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.04.004/
DO  - 10.1016/j.anihpc.2018.04.004
LA  - en
ID  - AIHPC_2019__36_1_165_0
ER  - 
%0 Journal Article
%A Caffarelli, Luis
%A Dávila, Gonzalo
%T Interior regularity for fractional systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 165-180
%V 36
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.04.004/
%R 10.1016/j.anihpc.2018.04.004
%G en
%F AIHPC_2019__36_1_165_0
Caffarelli, Luis; Dávila, Gonzalo. Interior regularity for fractional systems. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 165-180. doi : 10.1016/j.anihpc.2018.04.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.04.004/

[1] Caffarelli, L.A. Regularity theorems for weak solutions of some nonlinear systems, Commun. Pure Appl. Math., Volume 35 (1982) no. 6, pp. 833–838 | MR | Zbl | DOI

[2] Caffarelli, Luis; Silvestre, Luis Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 5, pp. 597–638 | MR | Zbl

[3] Caffarelli, Luis; Silvestre, Luis The Evans–Krylov theorem for nonlocal fully nonlinear equations, Ann. Math. (2011) no. 2, pp. 1163–1187 | MR | Zbl

[4] Da Lio, F. Fractional harmonic maps into manifolds in odd dimension n>1 , Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 3–4, pp. 421–445 | MR | Zbl

[5] Da Lio, F.; Rivière, T. Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, Volume 4 (2011) no. 1, pp. 149–190 | MR | Zbl

[6] Da Lio, F.; Rivière, T. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., Volume 227 (2011) no. 3, pp. 1300–1348 | MR | Zbl | DOI

[7] Da Lio, F.; Schikorra, A. n/p-Harmonic maps: regularity for the sphere case, Adv. Calc. Var., Volume 7 (2014) no. 1, pp. 1–26 (English summary) | MR | Zbl | DOI

[8] Di Castro, A.; Kuusi, T.; Palatucci, G. Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (15 September 2014) no. 6, pp. 1807–1836 | MR | Zbl | DOI

[9] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | MR | Zbl

[10] Hildebrandt, Stefan; Kaul, Helmut; Widman, Kjell-Ove An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math., Volume 138 (1977) no. 1–2, pp. 1–16 | MR | Zbl

[11] Hildebrandt, Stefan; Widman, Kjell-Ove On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1977), pp. 145–178 | MR | Zbl | mathdoc-id

[12] Kassmann, M. On regularity for Beurling–Deny type Dirichlet forms, Potential Anal., Volume 19 (August 2003) no. 1, pp. 69–87 | MR | Zbl | DOI

[13] M. Kassmann, Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited, available as SFB 701-preprint no. 11015, 2011.

[14] Millot, Vincent; Sire, Yannick On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125–210 | MR | Zbl

[15] Schikorra, A. Regularity of n/2-harmonic maps into spheres, J. Differ. Equ., Volume 252 (2012) no. 2, pp. 1862–1911 | MR | Zbl | DOI

[16] Schikorra, A. Integro-differential harmonic maps into spheres, Commun. Partial Differ. Equ., Volume 40 (2015) no. 3, pp. 506–539 (English summary) | MR | Zbl | DOI

[17] Schikorra, A. ε-regularity for systems involving non-local, antisymmetric operators, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3531–3570 (English summary) | MR | Zbl | DOI

[18] Serra, Joaquim Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3571–3601 | MR | Zbl

[19] Wiegner, Michael Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z., Volume 147 (1976) no. 1, pp. 21–28 | MR | Zbl

Cité par Sources :