Voir la notice de l'article provenant de la source Numdam
In this work, we provide stability estimates for the continuity equation with Sobolev vector fields. The results are inferred from contraction estimates for certain logarithmic Kantorovich–Rubinstein distances. As a by-product, we obtain a new proof of uniqueness in the DiPerna–Lions setting. The novelty in the proof lies in the fact that it is not based on the theory of renormalized solutions.
@article{AIHPC_2017__34_7_1837_0, author = {Seis, Christian}, title = {A quantitative theory for the continuity equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1837--1850}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2017.01.001}, zbl = {1377.35041}, mrnumber = {3724758}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.001/} }
TY - JOUR AU - Seis, Christian TI - A quantitative theory for the continuity equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1837 EP - 1850 VL - 34 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.001/ DO - 10.1016/j.anihpc.2017.01.001 LA - en ID - AIHPC_2017__34_7_1837_0 ER -
%0 Journal Article %A Seis, Christian %T A quantitative theory for the continuity equation %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1837-1850 %V 34 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.001/ %R 10.1016/j.anihpc.2017.01.001 %G en %F AIHPC_2017__34_7_1837_0
Seis, Christian. A quantitative theory for the continuity equation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1837-1850. doi : 10.1016/j.anihpc.2017.01.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.001/
[1] Exponential self-similar mixing and loss of regularity for continuity equations, C. R. Math., Volume 352 (2014) no. 11, pp. 901–906 | Zbl | MR | DOI
[2] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | MR | Zbl | DOI
[3] Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Volume 144 (2014) no. 6, pp. 1191–1244 | MR | Zbl | DOI
[4] Upper bounds on coarsening rates in demixing binary viscous liquids, SIAM J. Math. Anal., Volume 43 (2011) no. 1, pp. 114–134 | MR | Zbl | DOI
[5] A lemma and a conjecture on the cost of rearrangements, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 97–102 | MR | Zbl | mathdoc-id
[6] Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1831–1845 | MR | Zbl | DOI
[7] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15–46 | MR | Zbl
[8] Transport equation with integral terms, 2016 (preprint) | arXiv | MR | Zbl
[9] Non-unicité du transport par un champ de vecteurs presque BV, Seminaire: Équations aux Dérivées Partielles, 2002–2003, Sémin. Équ. Dériv. Partielles, vol. XIX, École Polytech, Palaiseau, 2003, pp. 9 | MR | Zbl | mathdoc-id
[10] On the Fokker–Planck–Boltzmann equation, Commun. Math. Phys., Volume 120 (1988) no. 1, pp. 1–23 | MR | Zbl | DOI
[11] Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729–757 | MR | Zbl | DOI
[12] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), Volume 130 (1989) no. 2, pp. 321–366 | MR | Zbl | DOI
[13] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | MR | Zbl | DOI
[14] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl
[15] A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields, Ann. Mat. Pura Appl. (4), Volume 190 (2011) no. 1, pp. 91–103 | MR | Zbl | DOI
[16] Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, Volume 27 (2014) no. 5, pp. 973–985 | MR | Zbl | DOI
[17] Differential equations with singular fields, J. Math. Pures Appl. (9), Volume 94 (2010) no. 6, pp. 597–621 | MR | Zbl
[18] Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., Volume 675 (2011), pp. 465–476 | MR | Zbl
[19] A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal., Volume 38 (2006) no. 3, pp. 795–823 (electronic) | MR | Zbl | DOI
[20] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68–79 | MR | Zbl | DOI
[21] Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., Volume 11 (2013) no. 2, pp. 441–464 | MR | Zbl | DOI
[22] Convergence rates for upwind schemes with rough coefficients, 2016 (preprint) | arXiv | MR | Zbl
[23] Maximal mixing by incompressible fluid flows, Nonlinearity, Volume 26 (2013) no. 12, pp. 3279–3289 | MR | Zbl | DOI
[24] Optimal stability estimates for continuity equations, Proc. R. Soc. Edinb., Sect. A (2017) (in press)
[25] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[26] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[27] Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. (2017) (in press; preprint, 2014) | arXiv | MR | Zbl | DOI
Cité par Sources :