Voir la notice de l'article provenant de la source Numdam
We prove, under the exterior geometric control condition, the Kato smoothing effect for solutions of an inhomogeneous and damped Schrödinger equation on exterior domains.
@article{AIHPC_2017__34_7_1759_0, author = {Aloui, Lassaad and Khenissi, Moez and Robbiano, Luc}, title = {The {Kato} smoothing effect for regularized {Schr\"odinger} equations in exterior domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1759--1792}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.006}, zbl = {1377.35044}, mrnumber = {3724756}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.006/} }
TY - JOUR AU - Aloui, Lassaad AU - Khenissi, Moez AU - Robbiano, Luc TI - The Kato smoothing effect for regularized Schrödinger equations in exterior domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1759 EP - 1792 VL - 34 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.006/ DO - 10.1016/j.anihpc.2016.12.006 LA - en ID - AIHPC_2017__34_7_1759_0 ER -
%0 Journal Article %A Aloui, Lassaad %A Khenissi, Moez %A Robbiano, Luc %T The Kato smoothing effect for regularized Schrödinger equations in exterior domains %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1759-1792 %V 34 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.006/ %R 10.1016/j.anihpc.2016.12.006 %G en %F AIHPC_2017__34_7_1759_0
Aloui, Lassaad; Khenissi, Moez; Robbiano, Luc. The Kato smoothing effect for regularized Schrödinger equations in exterior domains. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1759-1792. doi : 10.1016/j.anihpc.2016.12.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.006/
[1] Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., Volume 59 (2008), pp. 53–62 | Zbl | MR | DOI
[2] Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., Volume 59 (2008), pp. 179–193 | Zbl | MR
[3] Stabilisation de l'équation des ondes dans un domaine extérieur, Rev. Mat. Iberoam., Volume 28 (2002), pp. 1–16 | Zbl | MR
[4] Stabilization of Schrödinger equation in exterior domains, ESAIM Control Optim. Calc. Var., Volume 13 (2007), pp. 570–579 | Zbl | MR | mathdoc-id | DOI
[5] Smoothing effect for the regularized Schrödinger equation with non controlled orbits, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 265–275 | Zbl | MR | DOI
[6] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024–1065 | Zbl | MR | DOI
[7] Décroissance de l'énergie locale de l'équation des ondes pour le problème exterieur, Acta Math., Volume 180 (1998), pp. 1–29 | MR | DOI
[8] Mesures semi classiques et mesures de défaut, Astérisque, Volume 245 (1997), pp. 167–195 | Zbl | MR | mathdoc-id
[9] Semi-classical estimates for the resolvent in non trapping geometries, Int. Math. Res. Not., Volume 5 (2002), pp. 221–241 | Zbl | MR
[10] Smoothing effect for Schrödinger boundary value problems, Duke Math. J., Volume 123 (2004), pp. 403–427 | Zbl | MR | DOI
[11] On non linear Schrödinger equation in exterior domain, Ann. Inst. Henri Poincaré, Volume 21 (2004), pp. 295–318 | Zbl | MR | mathdoc-id
[12] Local smoothing properties of dispersive equation, J. Am. Math. Soc., Volume 1 (1988), pp. 413–439 | Zbl | MR | DOI
[13] Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., Volume 254 (2006), pp. 729–749 | Zbl | MR | DOI
[14] Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J., Volume 82 (1996), pp. 679–706 | Zbl | MR
[15] Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, 1996 | Zbl | MR
[16] Remarks on the Cauchy problem for Schrödinger type equations, Commun. Partial Differ. Equ., Volume 21 (1996), pp. 163–178 | Zbl | MR
[17] Smoothness of solutions for Schrödinger equations with unbounded potential, Publ. Res. Inst. Math. Sci., Kyoto Univ., Volume 41 (2005), pp. 175–221 | Zbl | MR
[18] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1761–1794 | Zbl | MR | DOI
[19] The Analysis of Linear Partial Differential Operators, vol. III, Springer, 1985 | Zbl | MR
[20] Local energy decay for linear wave equation with localized dissipation, Funkc. Ekvacioj, Volume 48 (2005), pp. 351–366 | Zbl | MR
[21] Équation des ondes amorties dans un domaine extérieur, Bull. Soc. Math. Fr., Volume 131 (2003), pp. 211–228 | Zbl | MR | mathdoc-id
[22] Scattering Theory, Pure and Applied Mathematics, vol. 26, Academics Press, New York, 1967 | Zbl | MR
[23] Équations des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic, The Netherlands, 1996, pp. 73–109 | MR | DOI
[24] Singularities and energy decay in acoustical scattering, Duke Math. J., Volume 46 (1979), pp. 43–59 | Zbl | MR | DOI
[25] Singularities of boundary value problems I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 593–617 | Zbl | MR | DOI
[26] Singularities of boundary value problems II, Commun. Pure Appl. Math., Volume 35 (1982), pp. 129–168 | Zbl | MR | DOI
[27] Decay of solutions of the wave equation outside non-trapping obstacles, Commun. Pure Appl. Math., Volume 30 (1977), pp. 447–508 | Zbl | MR | DOI
[28] Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. Differ. Equ., Volume 148 (1998), pp. 388–406 | Zbl | MR | DOI
[29] Solution of the wave equation with localized energy, Commun. Pure Appl. Math., Volume 22 (1969), pp. 807–823 | Zbl | MR | DOI
[30] Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., Volume 24 (1974), pp. 79–86 | Zbl | MR | DOI
[31] The Kato smoothing effect for Schödinger equations with unbounded potentials in exterior domains, Int. Math. Res. Not. (2009), pp. 1636–1698 | Zbl | MR
[32] Regularity of solutions to the Schrödinger equation, Duke Math. J., Volume 55 (1987), pp. 699–715 | Zbl | MR | DOI
[33] Asymptotic Methods in Equations of Mathematical Physics, Gordon & Breach Science Publishers, New York, 1989 | Zbl | MR
[34] Schrödinger equations: pointwise convergence to the initial data, Proc. Am. Math. Soc., Volume 102 (1988), pp. 874–878 | Zbl | MR
[35] Asymptotic lower bounds for a class of Schrödinger equations, Commun. Math. Phys., Volume 279 (2008), pp. 429–453 | Zbl | MR | DOI
[36] Semiclassical estimates in asymptotically Euclidean scattering, Commun. Math. Phys., Volume 212 (2000), pp. 205–217 | Zbl | MR
[37] Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes in Mathematics, vol. 442, Springer, New York, 1975 | Zbl | MR
Cité par Sources :