Voir la notice de l'article provenant de la source Numdam
We generalise and sharpen several recent results in the literature regarding the existence and complete classification of the isolated singularities for a broad class of nonlinear elliptic equations of the form
@article{AIHPC_2017__34_6_1483_0, author = {Chang, Ting-Ying and C{\^\i}rstea, Florica C.}, title = {Singular solutions for divergence-form elliptic equations involving regular variation theory: {Existence} and classification}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1483--1506}, publisher = {Elsevier}, volume = {34}, number = {6}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.001}, mrnumber = {3712008}, zbl = {1384.35037}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.001/} }
TY - JOUR AU - Chang, Ting-Ying AU - Cîrstea, Florica C. TI - Singular solutions for divergence-form elliptic equations involving regular variation theory: Existence and classification JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1483 EP - 1506 VL - 34 IS - 6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.001/ DO - 10.1016/j.anihpc.2016.12.001 LA - en ID - AIHPC_2017__34_6_1483_0 ER -
%0 Journal Article %A Chang, Ting-Ying %A Cîrstea, Florica C. %T Singular solutions for divergence-form elliptic equations involving regular variation theory: Existence and classification %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1483-1506 %V 34 %N 6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.001/ %R 10.1016/j.anihpc.2016.12.001 %G en %F AIHPC_2017__34_6_1483_0
Chang, Ting-Ying; Cîrstea, Florica C. Singular solutions for divergence-form elliptic equations involving regular variation theory: Existence and classification. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 6, pp. 1483-1506. doi : 10.1016/j.anihpc.2016.12.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.001/
[1] Local and global properties of solutions of quasilinear Hamilton–Jacobi equations, J. Funct. Anal., Volume 267 (2014) no. 9, pp. 3294–3331 | MR | Zbl
[2] Regular Variation, Encycl. Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[3] Local behaviour of singular solutions for nonlinear elliptic equations in divergence form, Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 3–4, pp. 367–393 | MR | Zbl
[4] Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 75 (1980/1981), pp. 1–6 | MR | Zbl | DOI
[5] Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 245–268 | MR | Zbl | DOI
[6] Weakly and strongly singular solutions of semilinear fractional elliptic equations, Asymptot. Anal., Volume 88 (2014) no. 3, pp. 165–184 | MR | Zbl
[7] Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term, Anal. PDE, Volume 8 (2015) no. 8, pp. 1931–1962 | MR | DOI
[8] Elliptic Equations: an Introductory Course, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009 | MR | Zbl
[9] A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Am. Math. Soc., Volume 227 (2014) no. 1068 | MR | Zbl
[10] Isolated singularities for weighted quasilinear elliptic equations, J. Funct. Anal., Volume 259 (2010) no. 1, pp. 174–202 | MR | Zbl | DOI
[11] Positive Liouville theorems and asymptotic behaviour for p-Laplacian type elliptic equations with a Fuchsian potential, Confluentes Math., Volume 3 (2011) no. 2, pp. 291–323 | MR | Zbl | DOI
[12] Isolated singularities of positive solutions of p-Laplacian type equations in , J. Differ. Equ., Volume 254 (2013) no. 3, pp. 1097–1119 | MR | Zbl | DOI
[13] Singular solutions of some quasilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 96 (1986), pp. 359–387 | MR | Zbl | DOI
[14] Elliptic Partial Differential Equations of Second Order, Class. Math., Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | MR
[15] Elliptic equations with nonlinear absorption depending on the solution and its gradient, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 1, pp. 205–239 | MR | DOI
[16] Classification of isolated singularities for nonhomogeneous operators in divergence form, J. Funct. Anal., Volume 268 (2015) no. 8, pp. 2336–2355 | MR | Zbl | DOI
[17] Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations, J. Funct. Anal., Volume 263 (2012) no. 6, pp. 1487–1538 | MR | Zbl
[18] The Maximum Principle, Prog. Nonlinear Differ. Equ. Appl., vol. 73, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[19] Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, Berlin, 1987 | MR | Zbl
[20] Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219–240 | MR | Zbl | DOI
[21] Asymptotic behavior of solutions of , J. Math. Anal. Appl., Volume 66 (1978) no. 1, pp. 95–134 | MR | Zbl | DOI
[22] Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., Volume 51 (1984), pp. 126–150 | MR | Zbl | DOI
[23] On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 721–747 | MR | Zbl | DOI
[24] Regularly Varying Functions, Lecture Notes in Mathematics, vol. 508, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[25] Removable singularities of some strongly nonlinear elliptic equations, Manuscr. Math., Volume 33 (1980/1981), pp. 129–144 | MR | Zbl | DOI
[26] Isolated singularities of some semilinear elliptic equations, J. Differ. Equ., Volume 60 (1985) no. 3, pp. 301–321 | MR | Zbl | DOI
[27] Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., Volume 5 (1981), pp. 225–242 | MR | Zbl | DOI
[28] Nonlinear Functional Analysis and Its Applications, Part 2, Proc. Symp. Pure Math., Volume vol. 45, Amer. Math. Soc., Providence, RI (1986), pp. 477–495 (Berkeley, Calif., 1983) | MR | Zbl | DOI
[29] Singularities of Solutions of Second Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, vol. 353, Longman, Harlow, 1996 | MR | Zbl
Cité par Sources :