Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 6, pp. 1543-1559.

Voir la notice de l'article provenant de la source Numdam

We provide Schauder estimates for nonlinear Beltrami equations and lower bounds of the Jacobians for homeomorphic solutions. The results were announced in [1] but here we give detailed proofs.

DOI : 10.1016/j.anihpc.2016.10.008
Classification : 30C62, 35J60, 35J46, 35B65
Keywords: Quasiconformal mappings, Nonlinear Beltrami equation, Schauder estimates, Non-vanishing of the Jacobian
@article{AIHPC_2017__34_6_1543_0,
     author = {Astala, Kari and Clop, Albert and Faraco, Daniel and J\"a\"askel\"ainen, Jarmo and Koski, Aleksis},
     title = {Nonlinear {Beltrami} operators, {Schauder} estimates and bounds for the {Jacobian}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1543--1559},
     publisher = {Elsevier},
     volume = {34},
     number = {6},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.008},
     zbl = {1375.30024},
     mrnumber = {3712010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.008/}
}
TY  - JOUR
AU  - Astala, Kari
AU  - Clop, Albert
AU  - Faraco, Daniel
AU  - Jääskeläinen, Jarmo
AU  - Koski, Aleksis
TI  - Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1543
EP  - 1559
VL  - 34
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.008/
DO  - 10.1016/j.anihpc.2016.10.008
LA  - en
ID  - AIHPC_2017__34_6_1543_0
ER  - 
%0 Journal Article
%A Astala, Kari
%A Clop, Albert
%A Faraco, Daniel
%A Jääskeläinen, Jarmo
%A Koski, Aleksis
%T Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1543-1559
%V 34
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.008/
%R 10.1016/j.anihpc.2016.10.008
%G en
%F AIHPC_2017__34_6_1543_0
Astala, Kari; Clop, Albert; Faraco, Daniel; Jääskeläinen, Jarmo; Koski, Aleksis. Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 6, pp. 1543-1559. doi : 10.1016/j.anihpc.2016.10.008. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.008/

[1] Astala, K.; Clop, A.; Faraco, D.; Jääskeläinen, J. Manifolds of quasiconformal mappings and the nonlinear Beltrami equation | arXiv | Zbl | DOI

[2] Astala, K.; Clop, A.; Faraco, D.; Jääskeläinen, J.; Székelyhidi, L. Jr. Uniqueness of normalized homeomorphic solutions to nonlinear Beltrami equations, Int. Math. Res. Not., Volume 2012 (2012) no. 18, pp. 4101–4119 | Zbl | MR | DOI

[3] Astala, K.; Faraco, D. Quasiregular mappings and Young measures, Proc. R. Soc. Edinb., Sect. A, Volume 132 (2002) no. 5, pp. 1045–1056 | Zbl | MR | DOI

[4] Astala, K.; Iwaniec, T.; Martin, G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009 | Zbl | MR

[5] Astala, K.; Iwaniec, T.; Saksman, E. Beltrami operators in the plane, Duke Math. J., Volume 107 (2001) no. 1, pp. 27–56 | Zbl | MR | DOI

[6] Bojarski, B. Symposia Mathematica, Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, Volume vol. XVIII, Academic Press, London (1976), pp. 485–499 (INDAM, Rome, 1974) | Zbl | MR

[7] Bojarski, B.; D'Onofrio, L.; Iwaniec, T.; Sbordone, C. G-closed classes of elliptic operators in the complex plane, Ric. Mat., Volume 54 (2005) no. 2, pp. 403–432 | Zbl | MR

[8] Bojarski, B.; Iwaniec, T. Quasiconformal mappings and non-linear elliptic equations in two variables. I, II, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 22 (1974), pp. 473–478 (479–484) | Zbl | MR

[9] Clop, A.; Cruz, V. Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn., Math., Volume 38 (2013) no. 1, pp. 91–113 | Zbl | MR

[10] Faraco, D. Tartar conjecture and Beltrami operators, Mich. Math. J., Volume 52 (2004) no. 1, pp. 83–104 | Zbl | MR | DOI

[11] Faraco, D.; Kristensen, J. Compactness versus regularity in the calculus of variations, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012) no. 2, pp. 473–485 | Zbl | MR

[12] Faraco, D.; Székelyhidi, L. Jr. Tartar's conjecture and localization of the quasiconvex hull in R2×2 , Acta Math., Volume 200 (2008), pp. 279–305 | Zbl | MR | DOI

[13] Giaquinta, M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983 | Zbl | MR

[14] Iwaniec, T. Symposia Mathematica, Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, Volume vol. XVIII, Academic Press, London (1976), pp. 501–517 (INDAM, Rome, 1974) | Zbl | MR

[15] Iwaniec, T.; Nolder, C.A. Hardy–Littlewood inequality for quasiregular mappings in certain domains in Rn , Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 10 (1985), pp. 267–282 | Zbl | MR

[16] Koski, A. Singular Integrals and Beltrami Type Operators in the Plane and Beyond, Department of Mathematics and Statistics, University of Helsinki, 2011 (Master's thesis)

[17] Kuusi, T.; Mingione, G. Universal potential estimates, J. Funct. Anal., Volume 262 (2012) no. 10, pp. 4205–4269 | Zbl | MR | DOI

[18] Ladyzhenskaya, O.A.; Ural'tseva, N.N. Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR

[19] Miniowitz, R. Normal families of quasimeromorphic mappings, Proc. Am. Math. Soc., Volume 84 (1982), pp. 35–43 | Zbl | MR | DOI

[20] Morrey, C.B. Jr. On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc., Volume 43 (1938) no. 1, pp. 126–166 | JFM | MR

[21] Renelt, H. Elliptic Systems and Quasiconformal Mappings, John Wiley and Sons, New York, 1988 | MR

[22] Schauder, J. Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z., Volume 38 (1934) no. 1, pp. 257–282 | Zbl | MR | JFM | DOI

[23] Schauder, J. Numerische Abschätzungen in elliptischen linearen Differentialgleichungen, Stud. Math., Volume 5 (1935), pp. 34–42 | Zbl | JFM

[24] Šverák, V. On Tartar's conjecture, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993), pp. 405–412 | Zbl | MR | mathdoc-id | DOI

Cité par Sources :