Voir la notice de l'article provenant de la source Numdam
We show that the support of any local minimizer of the interaction energy consists of isolated points whenever the interaction potential is of class and mildly repulsive at the origin; moreover, if the minimizer is global, then its support is finite. In addition, for some class of potentials we prove the validity of a uniform upper bound on the cardinal of the support of a global minimizer. Finally, in the one-dimensional case, we give quantitative bounds.
@article{AIHPC_2017__34_5_1299_0, author = {Carrillo, J.A. and Figalli, A. and Patacchini, F.S.}, title = {Geometry of minimizers for the interaction energy with mildly repulsive potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1299--1308}, publisher = {Elsevier}, volume = {34}, number = {5}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.004}, mrnumber = {3742525}, zbl = {1408.49035}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.004/} }
TY - JOUR AU - Carrillo, J.A. AU - Figalli, A. AU - Patacchini, F.S. TI - Geometry of minimizers for the interaction energy with mildly repulsive potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1299 EP - 1308 VL - 34 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.004/ DO - 10.1016/j.anihpc.2016.10.004 LA - en ID - AIHPC_2017__34_5_1299_0 ER -
%0 Journal Article %A Carrillo, J.A. %A Figalli, A. %A Patacchini, F.S. %T Geometry of minimizers for the interaction energy with mildly repulsive potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1299-1308 %V 34 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.004/ %R 10.1016/j.anihpc.2016.10.004 %G en %F AIHPC_2017__34_5_1299_0
Carrillo, J.A.; Figalli, A.; Patacchini, F.S. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1299-1308. doi : 10.1016/j.anihpc.2016.10.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.004/
[1] Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., Volume 74 (2014) no. 3, pp. 794–818 | MR | Zbl | DOI
[2] Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 3, pp. 1055–1088 | MR | Zbl | DOI
[3] Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., Volume 13 (2015) no. 4, pp. 955–985 | MR | Zbl | DOI
[4] From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 372 (2014) no. 2028 (11) | MR | Zbl
[5] Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., Volume 217 (2015), pp. 1197–1217 | MR | Zbl | DOI
[6] Ground states for diffusion dominated free energies with logarithmic interaction, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 1–25 | MR | Zbl | DOI
[7] Regularity of local minimizers of the interaction energy via obstacle problems, Commun. Math. Phys., Volume 343 (2016) no. 3, pp. 747–781 | MR | Zbl | DOI
[8] Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models (2017) (in press) | MR
[9] Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 373 (2015) no. 2050 (16) | MR
[10] Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett., Volume 96 (2006) no. 10
[11] Formation of clumps and patches in self-aggregation of finite-size particles, Physica D, Volume 220 (2006) no. 2, pp. 183–196 | MR | Zbl
[12] Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, Volume 84 (July 2011)
[13] Relative entropy in diffusive relaxation, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1563–1584 | MR | Zbl | DOI
[14] A non-local model for a swarm, J. Math. Biol., Volume 38 (1999) no. 6, pp. 534–570 | MR | Zbl | DOI
[15] Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., Volume 159 (2015) no. 4, pp. 972–986 | MR | Zbl | DOI
[16] A nonlocal continuum model for biological aggregation, Bull. Math. Biol., Volume 68 (2006) no. 7, pp. 1601–1623 | MR | DOI
[17] One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal., Volume 34 (2000) no. 6, pp. 1277–1291 | MR | Zbl | mathdoc-id | DOI
[18] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
Cité par Sources :