Voir la notice de l'article provenant de la source Numdam
We explore the relationship between two reference functions arising in the analysis of the Ginzburg–Landau functional. The first function describes the distribution of superconductivity in a type II superconductor subjected to a constant magnetic field. The second function describes the distribution of superconductivity in a type II superconductor submitted to a variable magnetic field that vanishes non-degenerately along a smooth curve.
@article{AIHPC_2017__34_2_423_0, author = {Helffer, Bernard and Kachmar, Ayman}, title = {From constant to non-degenerately vanishing magnetic fields in superconductivity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {423--438}, publisher = {Elsevier}, volume = {34}, number = {2}, year = {2017}, doi = {10.1016/j.anihpc.2015.12.008}, mrnumber = {3610939}, zbl = {1361.82039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.008/} }
TY - JOUR AU - Helffer, Bernard AU - Kachmar, Ayman TI - From constant to non-degenerately vanishing magnetic fields in superconductivity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 423 EP - 438 VL - 34 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.008/ DO - 10.1016/j.anihpc.2015.12.008 LA - en ID - AIHPC_2017__34_2_423_0 ER -
%0 Journal Article %A Helffer, Bernard %A Kachmar, Ayman %T From constant to non-degenerately vanishing magnetic fields in superconductivity %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 423-438 %V 34 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.008/ %R 10.1016/j.anihpc.2015.12.008 %G en %F AIHPC_2017__34_2_423_0
Helffer, Bernard; Kachmar, Ayman. From constant to non-degenerately vanishing magnetic fields in superconductivity. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 423-438. doi : 10.1016/j.anihpc.2015.12.008. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.008/
[1] The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire., Volume 32 (2015), pp. 325–345 | MR | Zbl | mathdoc-id | DOI
[2] Energy and vorticity of the Ginzburg–Landau model with variable magnetic field, Asymptot. Anal., Volume 93 (2015), pp. 75–114 | MR | Zbl
[3] Pinning with a variable magnetic field of the two dimensional Ginzburg–Landau model, 2015 (preprint) | arXiv
[4] On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptot. Anal., Volume 41 (2015) no. 3–4, pp. 215–258 | MR | Zbl
[5] Persistence of superconductivity in thin shells beyond , 2014 (Commun. Contemp. Math.) | arXiv | MR | DOI
[6] Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhäuser, 2010 | MR | Zbl
[7] The ground state energy of the three dimensional Ginzburg–Landau functional. Part I. Bulk regime, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 339–383 | MR | Zbl | DOI
[8] Boundary effects in superconductors, Rev. Mod. Phys. (January 1964) | DOI
[9] The Ginzburg–Landau functional with a vanishing magnetic field, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 55–122 | MR | Zbl | DOI
[10] Hearing the zero locus of a magnetic field, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 651–675 | MR | Zbl | DOI
[11] J.-P. Miqueu, Equation de Schrödinger avec un champ magnétique qui s'annule, Thèse de doctorat, in preparation.
[12] Upper critical field for superconductors with edges and corners, Calc. Var. Partial Differ. Equ., Volume 14 (2002) no. 4, pp. 447–482 | MR | Zbl
[13] Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 4201–4227 | MR | Zbl
[14] Vortices for the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser, 2007 | MR | Zbl | DOI
[15] The decrease of bulk superconductivity close to the second critical field in the Ginzburg–Landau model, SIAM J. Math. Anal., Volume 34 (2003) no. 4, pp. 939–956 | MR | Zbl | DOI
Cité par Sources :