Voir la notice de l'article provenant de la source Numdam
We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.
@article{AIHPC_2017__34_1_31_0, author = {Bandtlow, Oscar F. and Just, Wolfram and Slipantschuk, Julia}, title = {Spectral structure of transfer operators for expanding circle maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {31--43}, publisher = {Elsevier}, volume = {34}, number = {1}, year = {2017}, doi = {10.1016/j.anihpc.2015.08.004}, mrnumber = {3592677}, zbl = {1377.37035}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.004/} }
TY - JOUR AU - Bandtlow, Oscar F. AU - Just, Wolfram AU - Slipantschuk, Julia TI - Spectral structure of transfer operators for expanding circle maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 31 EP - 43 VL - 34 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.004/ DO - 10.1016/j.anihpc.2015.08.004 LA - en ID - AIHPC_2017__34_1_31_0 ER -
%0 Journal Article %A Bandtlow, Oscar F. %A Just, Wolfram %A Slipantschuk, Julia %T Spectral structure of transfer operators for expanding circle maps %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 31-43 %V 34 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.004/ %R 10.1016/j.anihpc.2015.08.004 %G en %F AIHPC_2017__34_1_31_0
Bandtlow, Oscar F.; Just, Wolfram; Slipantschuk, Julia. Spectral structure of transfer operators for expanding circle maps. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 31-43. doi : 10.1016/j.anihpc.2015.08.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.004/
[1] Smooth Ergodic Theory and Its Applications (1999), pp. 297–325 (Seattle) | MR | Zbl
[2] Positive Transfer Operators and Decay of Correlations, World Scientific Publishing, Singapore, 2000 | Zbl | MR | DOI
[3] Dynamical determinants via dynamical conjugacies for postcritically finite polynomials, J. Stat. Phys., Volume 108 (2002) no. 5–6, pp. 973–993 | MR | Zbl
[4] Resolvent estimates for operators belonging to exponential classes, Integral Equ. Oper. Theory, Volume 61 (2008), pp. 21–43 | MR | Zbl | DOI
[5] Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., Volume 218 (2008), pp. 902–925 | MR | Zbl | DOI
[6] On the Ruelle eigenvalue sequence, Ergod. Theory Dyn. Syst., Volume 28 (2008) no. 06, pp. 1701–1711 | MR | Zbl | DOI
[7] Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probab. Appl., Birkhäuser, 1997 | MR | Zbl
[8] An Introduction to Classical Complex Analysis, vol. 1, Academic Press, Inc., New York–London, 1979 | MR | Zbl | DOI
[9] Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995 | MR | Zbl
[10] Theory of -Spaces, Academic Press, New York, 1970 | MR | Zbl
[11] Zeta functions of Ruelle and Selberg I, Ann. Sci. Éc. Norm. Super., Volume 19 (1986), pp. 491–517 | MR | Zbl | mathdoc-id
[12] Eigenfunctions for smooth expanding circle maps, Nonlinearity, Volume 17 (2004) no. 5, pp. 1723–1730 | MR | Zbl | DOI
[13] On Mayer's conjecture and zeros of entire functions, Ergod. Theory Dyn. Syst., Volume 14 (1994) no. 03, pp. 565–574 | MR | Zbl | DOI
[14] A Ruelle operator for a real Julia set, Commun. Math. Phys., Volume 141 (1991) no. 1, pp. 119–132 | MR | Zbl | DOI
[15] Ruelle operators with rational weights for Julia sets, J. Anal. Math., Volume 63 (1994) no. 1, pp. 303–331 | MR | Zbl | DOI
[16] On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. Lond. Math. Soc., Volume 15 (1983) no. 4, pp. 343–348 | MR | Zbl
[17] Continued fractions and related transformations, Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991, pp. 175–222 | MR
[18] Expanding maps of the circle rerevisited: positive Lyapunov exponents in a rich family, Ergod. Theory Dyn. Syst., Volume 26 (2006) no. 06, pp. 1931–1937 | MR | Zbl | DOI
[19] Invariant subspaces of for multiply connected regions, Pac. J. Math., Volume 134 (1988) no. 1 | MR | Zbl
[20] Real and Complex Analysis, McGraw-Hill Book Co., 1987 | MR | Zbl
[21] Zeta-functions for expanding maps and Anosov flows, Invent. Math., Volume 34 (1976) no. 3, pp. 231–242 | MR | Zbl | DOI
[22] The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992) no. 6, pp. 1237–1263 | MR | Zbl
[23] Coupled maps and analytic function spaces, Ann. Sci. Éc. Norm. Super., Volume 35 (2002) no. 4, pp. 489–535 | MR | Zbl | mathdoc-id
[24] The Spaces of an Annulus, Mem. Am. Math. Soc., vol. 56, 1965 | MR | Zbl
[25] Composition Operators and Classical Function Theory, Springer, 1993 | MR | Zbl | DOI
[26] Analytic expanding circle maps with explicit spectra, Nonlinearity, Volume 26 (2013) | MR | Zbl | DOI
[27] On correlation decay in low-dimensional systems, Europhys. Lett., Volume 104 (2013) | DOI
[28] Blaschke products and expanding maps of the circle, Proc. Am. Math. Soc., Volume 128 (1999) no. 2, pp. 621–622 | MR | Zbl | DOI
[29] Fredholm determinant of complex Ruelle operator, Ruelle's dynamical zeta-function, and forward/backward Collet–Eckmann condition, Sūrikaisekikenkyūsho Kōkyūroku, Volume 1153 (2000), pp. 85–102 | MR | Zbl
[30] An Introduction to Ergodic Theory, Springer, 2000 | Zbl
Cité par Sources :