Voir la notice de l'article provenant de la source Numdam
In this article we study the optimal regularity for solutions to the following weakly coupled system with interconnected obstacles
We derive the optimal -regularity for the minimal solution under the assumption that the zero loop set is the closure of its interior. This result is optimal and we provide a counterexample showing that the -regularity does not hold without the assumption .
@article{AIHPC_2016__33_6_1455_0, author = {Aleksanyan, Gohar}, title = {Optimal regularity in the optimal switching problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1455--1471}, publisher = {Elsevier}, volume = {33}, number = {6}, year = {2016}, doi = {10.1016/j.anihpc.2015.06.001}, zbl = {1352.49036}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.001/} }
TY - JOUR AU - Aleksanyan, Gohar TI - Optimal regularity in the optimal switching problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1455 EP - 1471 VL - 33 IS - 6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.001/ DO - 10.1016/j.anihpc.2015.06.001 LA - en ID - AIHPC_2016__33_6_1455_0 ER -
%0 Journal Article %A Aleksanyan, Gohar %T Optimal regularity in the optimal switching problem %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1455-1471 %V 33 %N 6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.001/ %R 10.1016/j.anihpc.2015.06.001 %G en %F AIHPC_2016__33_6_1455_0
Aleksanyan, Gohar. Optimal regularity in the optimal switching problem. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1455-1471. doi : 10.1016/j.anihpc.2015.06.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.001/
[1] Optimal regularity for the no-sign obstacle problem, Commun. Pure Appl. Math., Volume 66 (2013), pp. 245–262 | Zbl
[2] Nonlinear PDEs for stochastic optimal control with switchings and impulses, Appl. Math. Optim., Volume 14 (1986), pp. 215–227
[3] Adjoint methods for obstacle problems and weakly coupled systems of PDE, ESAIM Control Optim. Calc. Var., Volume 19 (2013), pp. 754–779 | Zbl | mathdoc-id
[4] Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., Volume 253 (1979), pp. 365–389 | Zbl
[5] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | Zbl | DOI
[6] Systems of weakly coupled Hamilton–Jacobi equations with implicit obstacles, Can. J. Math., Volume 64 (2012), pp. 1289–1309 | Zbl
[7] A system of nonlinear partial differential equations arising in the optimal control of stochastic systems with switching costs, SIAM J. Appl. Math., Volume 43 (1983), pp. 465–475 | Zbl
[8] Regularity of Free Boundaries in Obstacle-Type Problems, American Mathematical Society, Providence, RI, 2012 | Zbl | DOI
[9] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | Zbl
Cité par Sources :