Voir la notice de l'article provenant de la source Numdam
In this article, we develop the local Cauchy theory for the gravity water waves system, for rough initial data which do not decay at infinity. We work in the context of -based uniformly local Sobolev spaces introduced by Kato [22]. We prove a classical well-posedness result (without loss of derivatives). Our result implies also a local well-posedness result in Hölder spaces (with loss of derivatives). As an illustration, we solve a question raised by Boussinesq in [9] on the water waves problem in a canal. We take benefit of an elementary observation to show that the strategy suggested in [9] does indeed apply to this setting.
@article{AIHPC_2016__33_2_337_0, author = {Alazard, T. and Burq, N. and Zuily, C.}, title = {Cauchy theory for the gravity water waves system with non-localized initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {337--395}, publisher = {Elsevier}, volume = {33}, number = {2}, year = {2016}, doi = {10.1016/j.anihpc.2014.10.004}, zbl = {1339.35227}, mrnumber = {3465379}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.10.004/} }
TY - JOUR AU - Alazard, T. AU - Burq, N. AU - Zuily, C. TI - Cauchy theory for the gravity water waves system with non-localized initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 337 EP - 395 VL - 33 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.10.004/ DO - 10.1016/j.anihpc.2014.10.004 LA - en ID - AIHPC_2016__33_2_337_0 ER -
%0 Journal Article %A Alazard, T. %A Burq, N. %A Zuily, C. %T Cauchy theory for the gravity water waves system with non-localized initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 337-395 %V 33 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.10.004/ %R 10.1016/j.anihpc.2014.10.004 %G en %F AIHPC_2016__33_2_337_0
Alazard, T.; Burq, N.; Zuily, C. Cauchy theory for the gravity water waves system with non-localized initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 337-395. doi : 10.1016/j.anihpc.2014.10.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.10.004/
[1] On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011) no. 3, pp. 413–499 | MR | Zbl
[2] On the Cauchy problem for gravity water waves, Invent. Math., Volume 198 (2014) no. 1, pp. 71–163 | MR
[3] Strichartz estimates and the Cauchy problem for the gravity water waves equations | arXiv | Zbl | DOI
[4] Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Commun. Partial Differ. Equ., Volume 34 (2009) no. 10–12, pp. 1632–1704 | Zbl | MR
[5] Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., Volume 11 (1986) no. 1, pp. 87–121 | Zbl | MR
[6] Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Commun. Partial Differ. Equ., Volume 14 (1989) no. 2, pp. 173–230 | MR | Zbl
[7] Mathematics for 2d interfaces, Singularities in Mechanics: Formation, Propagation and Microscopic Description, Panor. Synth., vol. 38, 2012 (xxxiv+162 pp)
[8] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981) no. 2, pp. 209–246 | Zbl | MR | mathdoc-id
[9] Sur une importante simplification de la théorie des ondes que produisent, à la surface d'un liquide, l'emersion d'un solide ou l'impulsion d'un coup de vent, Ann. Sci. Éc. Norm. Supér. (3), Volume 27 (1910), pp. 9–42 | JFM | MR | mathdoc-id
[10] Splash singularity for water waves, Proc. Natl. Acad. Sci., Volume 109 (January 17, 2012) no. 3, pp. 733–738 | Zbl | MR
[11] Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity | arXiv | Zbl | DOI
[12] An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Commun. Partial Differ. Equ., Volume 10 (1985) no. 8, pp. 787–1003 | Zbl | MR
[13] Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000) no. 2, pp. 323–359 (electronic) | Zbl | MR
[14] Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, Volume 5 (1992) no. 2, pp. 497–522 | Zbl | MR | DOI
[15] Well-posedness of the Stokes–Coriolis system in the half-space over a rough surface | arXiv | Zbl | DOI
[16] Etude théorique et expérimentale des ondes de translation dans les canaux découverts, Dunod, Paris, 1935
[17] spaces of several variables, Acta Math., Volume 129 (1972) no. 1, pp. 137–193 | Zbl | MR
[18] Relevance of the slip condition for fluid flows near an irregular boundary, Commun. Math. Phys., Volume 295 (2010) no. 1, pp. 99–137 | Zbl | MR
[19] Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), Volume 175 (2012) no. 2, pp. 691–754 | Zbl | MR
[20] Elliptic Problems in Non Smooth Domains, Pitman, 1985 | MR
[21] Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., Volume 200 (2009) no. 940 (viii+128 pp) | Zbl | MR
[22] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975) no. 3, pp. 181–205 | Zbl | MR
[23] The Water Waves Problem: Mathematical Analysis and Asymptotics, Math. Surv. Monogr., vol. 188, American Mathematical Society, Providence, RI, 2013 (xx+321 pp) | Zbl | MR | DOI
[24] Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605–654 (electronic) | Zbl | MR
[25] A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481–567 | Zbl | MR
[26] Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), Volume 162 (2005) no. 1, pp. 109–194 | Zbl | MR
[27] Problèmes aux limites non homogènes, vol. 1, Dunod, 1968 | MR | Zbl
[28] Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5, Edizioni della Normale, Pisa, 2008 | Zbl | MR
[29] Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., Volume 5 (1981) no. 3, pp. 303–323 | Zbl | MR
[30] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., Volume 12 (1999) no. 2, pp. 445–495 | Zbl | MR
[31] Almost global well-posedness of the 2-D full water wave problem, Invent. Math., Volume 177 (2009) no. 1, pp. 45–135 | Zbl | MR
[32] Global wellposedness of the 3-D full water wave problem, Invent. Math., Volume 184 (2011) no. 1, pp. 125–220 | Zbl | MR
[33] Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., Volume 9 (1968) no. 2, pp. 190–194
Cité par Sources :