Voir la notice de l'article provenant de la source Numdam
In this paper we will prove the existence of weak solutions to the Korteweg–de Vries initial value problem on the real line with initial data; moreover, we will study the problem of orbital and asymptotic stability of solitons for integers ; finally, we will also prove new a priori bound for solutions to the Korteweg–de Vries equation. The paper will utilise the Miura transformation to link the Korteweg–de Vries equation to the modified Korteweg–de Vries equation.
@article{AIHPC_2015__32_5_1071_0, author = {Buckmaster, Tristan and Koch, Herbert}, title = {The {Korteweg{\textendash}de} {Vries} equation at $ {H}^{-1}$ regularity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1071--1098}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.05.004}, mrnumber = {3400442}, zbl = {1331.35300}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.004/} }
TY - JOUR AU - Buckmaster, Tristan AU - Koch, Herbert TI - The Korteweg–de Vries equation at $ {H}^{-1}$ regularity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1071 EP - 1098 VL - 32 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.004/ DO - 10.1016/j.anihpc.2014.05.004 LA - en ID - AIHPC_2015__32_5_1071_0 ER -
%0 Journal Article %A Buckmaster, Tristan %A Koch, Herbert %T The Korteweg–de Vries equation at $ {H}^{-1}$ regularity %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1071-1098 %V 32 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.004/ %R 10.1016/j.anihpc.2014.05.004 %G en %F AIHPC_2015__32_5_1071_0
Buckmaster, Tristan; Koch, Herbert. The Korteweg–de Vries equation at $ {H}^{-1}$ regularity. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 1071-1098. doi : 10.1016/j.anihpc.2014.05.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.004/
[1] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocussing equations, Am. J. Math. 125 no. 6 (2003), 1235 -1293 | MR | Zbl
, , ,[2] Sharp global well-posedness for KdV and modified KdV on and , J. Am. Math. Soc. 16 no. 3 (2003), 705 -749 | MR | Zbl
, , , , ,[3] On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Commun. Math. Phys. 203 no. 2 (1999), 341 -347 | MR | Zbl
, ,[4] Global well-posedness of Korteweg–de Vries equation in , J. Math. Pures Appl. (9) 91 no. 6 (2009), 583 -597 | MR | Zbl
,[5] Global wellposedness of KdV in , Duke Math. J. 135 no. 2 (2006), 327 -360 | MR | Zbl
, ,[6] The Miura map on the line, Int. Math. Res. Not. no. 50 (2005), 3091 -3133 | MR | Zbl
, , , ,[7] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in Applied Mathematics, Adv. Math. Suppl. Stud. vol. 8 , Academic Press, New York (1983), 93 -128 | MR | Zbl
,[8] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math. 46 no. 4 (1993), 527 -620 | MR | Zbl
, , ,[9] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 no. 3 (2001), 617 -633 | MR | Zbl
, , ,[10] Well-posedness of the Cauchy problem for the Korteweg–de Vries equation at the critical regularity, Differ. Integral Equ. 22 no. 5–6 (2009), 447 -464 | MR | Zbl
,[11] A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. no. 16 (2007) | MR | Zbl
, ,[12] Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952 -960 | MR | Zbl
, , , ,[13] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, The Stability of Matter: From Atoms to Stars (2005), 205 -239
, ,[14] B. Liu, A-priori bounds for KdV equation below , arXiv e-prints, 2011. | MR
[15] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 no. 3 (2001), 219 -254 | MR | Zbl
, ,[16] stability of solitons for KdV equation, Int. Math. Res. Not. no. 13 (2003), 735 -753 | MR | Zbl
, ,[17] Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9 (1968), 1204 -1209 | MR | Zbl
, , ,[18] Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann. (2011), 1 -32 | MR
, ,[19] A note on ill-posedness for the KdV equation, Differ. Integral Equ. 24 no. 7–8 (2011), 759 -765 | MR | Zbl
,[20] Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, Harcourt Brace Jovanovich Publishers, New York (1975) | MR | Zbl
, ,[21] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Ser. Nonlinear Anal. Appl. vol. 3 , Walter de Gruyter & Co., Berlin (1996) | MR | Zbl
, ,[22] Nonlinear dispersive equations, Local and Global Analysis, CBMS Reg. Conf. Ser. Math. vol. 106 , Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006) | MR | Zbl
,[23] The Cauchy problem for the Korteweg–de Vries equation with measures as initial data, SIAM J. Math. Anal. 20 no. 3 (1989), 582 -588 | MR | Zbl
,[24] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math. 39 no. 1 (1986), 51 -67 | MR | Zbl
,Cité par Sources :