Voir la notice de l'article provenant de la source Numdam
We derive homogenized von Kármán shell theories starting from three dimensional nonlinear elasticity. The original three dimensional model contains two small parameters: the period of oscillation ε of the material properties and the thickness h of the shell. Depending on the asymptotic ratio of these two parameters, we obtain different asymptotic theories. In the case we identify two different asymptotic theories, depending on the ratio of h and . In the case of convex shells we obtain a complete picture in the whole regime .
@article{AIHPC_2015__32_5_1039_0, author = {Hornung, Peter and Vel\v{c}i\'c, Igor}, title = {Derivation of a homogenized {von-K\'arm\'an} shell theory from {3D} elasticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1039--1070}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.05.003}, mrnumber = {3400441}, zbl = {1329.74178}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.003/} }
TY - JOUR AU - Hornung, Peter AU - Velčić, Igor TI - Derivation of a homogenized von-Kármán shell theory from 3D elasticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1039 EP - 1070 VL - 32 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.003/ DO - 10.1016/j.anihpc.2014.05.003 LA - en ID - AIHPC_2015__32_5_1039_0 ER -
%0 Journal Article %A Hornung, Peter %A Velčić, Igor %T Derivation of a homogenized von-Kármán shell theory from 3D elasticity %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1039-1070 %V 32 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.003/ %R 10.1016/j.anihpc.2014.05.003 %G en %F AIHPC_2015__32_5_1039_0
Hornung, Peter; Velčić, Igor. Derivation of a homogenized von-Kármán shell theory from 3D elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 1039-1070. doi : 10.1016/j.anihpc.2014.05.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.05.003/
[1] Moderately wrinkled plate, Asymptot. Anal. 16 no. 3–4 (1998), 273 -297 | MR | Zbl
, , , ,[2] Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 no. 6 (1992), 1482 -1518 | MR | Zbl
,[3] Slightly wrinkled plate, Asymptot. Anal. 13 no. 1 (1996), 1 -29 | MR | Zbl
, , ,[4] Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl. (9) 96 no. 1 (2011), 29 -57 | MR | Zbl
, ,[5] 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J. 49 no. 4 (2000), 1367 -1404 | MR | Zbl
, , ,[6] Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. Detta Accad. XL, Parte I, Mem. Mat. (5) 9 no. 1 (1985), 313 -321 | MR | Zbl
,[7] Mathematical Elasticity, vol. III, Stud. Math. Appl. vol. 29 , North-Holland Publishing Co., Amsterdam (2000) | MR | Zbl
,[8] Compensated compactness for nonlinear homogenization and reduction of dimension, Calc. Var. Partial Differ. Equ. 20 no. 1 (2004), 65 -91 | MR | Zbl
, ,[9] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math. 55 no. 11 (2002), 1461 -1506 | MR | Zbl
, , ,[10] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 no. 2 (2006), 183 -236 | MR | Zbl
, , ,[11] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 no. 8 (2003), 697 -702 | MR | Zbl
, , , ,[12] Homogenization of thin piezoelectric perforated shells, M2AN Math. Model. Numer. Anal. 41 no. 5 (2007), 875 -895 | MR | EuDML | Zbl | mathdoc-id
, , , ,[13] Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates, Asymptot. Anal. 47 no. 1–2 (2006), 139 -169 | MR | Zbl
, ,[14] On the rigidity of certain surfaces with folds and applications to shell theory, Arch. Ration. Mech. Anal. 129 no. 1 (1995), 11 -45 | MR | Zbl
, ,[15] Derivation of the homogenized bending plate model from 3D nonlinear elasticity, Calc. Var. Partial Differ. Equ. (2014), http://dx.doi.org/10.1007/s00526-013-0691-8 | Zbl
, , ,[16] Continuation of infinitesimal bendings on developable surfaces and equilibrium equations for nonlinear bending theory of plates, Commun. Partial Differ. Equ. (2014) | MR | Zbl
,[17] Peter Hornung, The Willmore functional on isometric immersions, 2012, MIS MPG preprint.
[18] Riemannian Geometry and Geometric Analysis, Universitext , Springer, Heidelberg (2011) | MR | Zbl
,[19] A one-dimensional model of homogenized rod, Glas. Mat. 24(44) no. 2–3 (1989), 271 -290 | MR | Zbl
, ,[20] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9) 74 no. 6 (1995), 549 -578 | MR | Zbl
, ,[21] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci. 6 no. 1 (1996), 59 -84 | MR | Zbl
, ,[22] Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 no. 2 (2010), 253 -295 | MR | Zbl | mathdoc-id
, , ,[23] The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells, Arch. Ration. Mech. Anal. 200 no. 3 (2011), 1023 -1050 | MR | Zbl
, , ,[24] Asymptotic analysis and homogenization, Plates, Laminates and Shells, Ser. Adv. Math. Appl. Sci. vol. 52 , World Scientific Publishing Co. Inc., River Edge, NJ (2000) | MR | Zbl
, ,[25] Homogenization of thin elastic shell, J. Elast. 15 no. 1 (1985), 69 -87 | MR | Zbl
,[26] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal. 99 no. 3 (1987), 189 -212 | MR | Zbl
,[27] Homogenization, linearization and dimension reduction in elasticity with variational methods, Tecnische Universität München (2010)
,[28] Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity, Arch. Ration. Mech. Anal. 206 no. 2 (2012), 645 -706 | MR | Zbl
,[29] Derivation of a homogenized von Kármán plate theory from 3D elasticity, Math. Models Methods Appl. Sci. 23 no. 14 (2013), 2701 -2748 | MR | Zbl
, ,[30] Plate theory for stressed heterogeneous multilayers of finite bending energy, J. Math. Pures Appl. (9) 88 no. 1 (2007), 107 -122 | MR | Zbl
,[31] A note on the derivation of homogenized bending plate model, http://www.mis.mpg.de/publications/preprints/2013/prepr2013-34.html | MR | Zbl
,[32] On the general homogenization and γ-closure for the equations of von kármán plate, http://www.mis.mpg.de/preprints/2013/preprint2013_61.pdf | Zbl
,[33] Periodically wrinkled plate of Föppl von Kármán type, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 12 no. 2 (2013), 275 -307 | MR | Zbl | mathdoc-id
,[34] Towards a two-scale calculus, ESAIM Control Optim. Calc. Var. 12 no. 3 (2006), 371 -397 | MR | EuDML | Zbl | mathdoc-id
,[35] Two-scale convergence of some integral functionals, Calc. Var. Partial Differ. Equ. 29 no. 2 (2007), 239 -265 | MR | Zbl
,Cité par Sources :