Regularity for degenerate two-phase free boundary problems
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 741-762 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We provide a rather complete description of the sharp regularity theory to a family of heterogeneous, two-phase free boundary problems, 𝒥 γ min , ruled by nonlinear, p-degenerate elliptic operators. Included in such family are heterogeneous cavitation problems of Prandtl–Batchelor type, singular degenerate elliptic equations; and obstacle type systems. The Euler–Lagrange equation associated to 𝒥 γ becomes singular along the free interface {u=0}. The degree of singularity is, in turn, dimmed by the parameter γ[0,1]. For 0<γ<1 we show that local minima are locally of class C 1,α for a sharp α that depends on dimension, p and γ. For γ=0 we obtain a quantitative, asymptotically optimal result, which assures that local minima are Log-Lipschitz continuous. The results proven in this article are new even in the classical context of linear, nondegenerate equations.

DOI : 10.1016/j.anihpc.2014.03.004
Classification : 35R35, 35J70, 35J75, 35J20
Keywords: Free boundary problems, Degenerate elliptic operators, Regularity theory
@article{AIHPC_2015__32_4_741_0,
     author = {Leit\~ao, Raimundo and de Queiroz, Olivaine S. and Teixeira, Eduardo V.},
     title = {Regularity for degenerate two-phase free boundary problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {741--762},
     year = {2015},
     publisher = {Elsevier},
     volume = {32},
     number = {4},
     doi = {10.1016/j.anihpc.2014.03.004},
     mrnumber = {3390082},
     zbl = {06476998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.03.004/}
}
TY  - JOUR
AU  - Leitão, Raimundo
AU  - de Queiroz, Olivaine S.
AU  - Teixeira, Eduardo V.
TI  - Regularity for degenerate two-phase free boundary problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 741
EP  - 762
VL  - 32
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.03.004/
DO  - 10.1016/j.anihpc.2014.03.004
LA  - en
ID  - AIHPC_2015__32_4_741_0
ER  - 
%0 Journal Article
%A Leitão, Raimundo
%A de Queiroz, Olivaine S.
%A Teixeira, Eduardo V.
%T Regularity for degenerate two-phase free boundary problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 741-762
%V 32
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.03.004/
%R 10.1016/j.anihpc.2014.03.004
%G en
%F AIHPC_2015__32_4_741_0
Leitão, Raimundo; de Queiroz, Olivaine S.; Teixeira, Eduardo V. Regularity for degenerate two-phase free boundary problems. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 741-762. doi: 10.1016/j.anihpc.2014.03.004

Cité par Sources :