Voir la notice de l'article provenant de la source Numdam
We study weak solutions of the 3D Navier–Stokes equations with initial data. We prove that is locally integrable in space–time for any real α such that . Up to now, only the second derivative was known to be locally integrable by standard parabolic regularization. We also present sharp estimates of those quantities in weak-. These estimates depend only on the -norm of the initial data and on the domain of integration. Moreover, they are valid even for as long as u is smooth. The proof uses a standard approximation of Navier–Stokes from Leray and blow-up techniques. The local study is based on De Giorgi techniques with a new pressure decomposition. To handle the non-locality of fractional Laplacians, Hardy space and Maximal functions are introduced.
@article{AIHPC_2014__31_5_899_0, author = {Choi, Kyudong and Vasseur, Alexis F.}, title = {Estimates on fractional higher derivatives of weak solutions for the {Navier{\textendash}Stokes} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {899--945}, publisher = {Elsevier}, volume = {31}, number = {5}, year = {2014}, doi = {10.1016/j.anihpc.2013.08.001}, mrnumber = {3258360}, zbl = {1297.76047}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/} }
TY - JOUR AU - Choi, Kyudong AU - Vasseur, Alexis F. TI - Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 899 EP - 945 VL - 31 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/ DO - 10.1016/j.anihpc.2013.08.001 LA - en ID - AIHPC_2014__31_5_899_0 ER -
%0 Journal Article %A Choi, Kyudong %A Vasseur, Alexis F. %T Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 899-945 %V 31 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/ %R 10.1016/j.anihpc.2013.08.001 %G en %F AIHPC_2014__31_5_899_0
Choi, Kyudong; Vasseur, Alexis F. Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 899-945. doi : 10.1016/j.anihpc.2013.08.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/
[1] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys. 94 no. 1 (1984), 61 -66 | MR | Zbl
, , ,[2] A new regularity class for the Navier–Stokes equations in , Chin. Ann. Math., Ser. B 16 no. 4 (1995), 407 -412 , Chin. Ann. Math., Ser. A 16 no. 6 (1995), 797 | MR | Zbl
,[3] Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. vol. 223 , Springer-Verlag, Berlin (1976) | MR | Zbl
, ,[4] Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations, Proc. Am. Math. Soc. 130 no. 12 (2002), 3585 -3595 | MR | Zbl
, ,[5] Weak in space, log in time improvement of the Ladyženskaja–Prodi–Serrin criteria, J. Math. Fluid Mech. 13 no. 2 (2011), 259 -269 | MR | Zbl
, ,[6] Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math. 35 no. 6 (1982), 771 -831 | MR | Zbl
, , ,[7] Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math. 171 no. 3 (2010), 1903 -1930 | MR | Zbl
, ,[8] On the interior regularity of suitable weak solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ. 32 no. 7–9 (2007), 1189 -1207 | MR | Zbl
, , ,[9] Smoothness criterion for Navier–Stokes equations in terms of regularity along the streamlines, Methods Appl. Anal. 17 no. 1 (2010), 81 -103 | MR | Zbl
,[10] The regularity of weak solutions of the 3D Navier–Stokes equations in , Arch. Ration. Mech. Anal. 195 (2010), 159 -169 | MR | Zbl
, ,[11] Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 no. 3 (1993), 247 -286 | MR | Zbl
, , , ,[12] Navier–Stokes equations and area of interfaces, Commun. Math. Phys. 129 no. 2 (1990), 241 -266 | MR | Zbl
,[13] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 3 (1957), 25 -43 | MR | Zbl
,[14] On the local smoothness of solutions of the Navier–Stokes equations, J. Math. Fluid Mech. 9 no. 2 (2007), 139 -152 | MR | Zbl
, ,[15] Derivative estimates for the Navier–Stokes equations in a three-dimensional region, Acta Math. 164 no. 3–4 (1990), 145 -210 | MR | Zbl
,[16] -solutions of Navier–Stokes equations and backward uniqueness, Usp. Mat. Nauk 58 no. 2(350) (2003), 3 -44 | MR | Zbl
, , ,[17] spaces of several variables, Acta Math. 129 no. 3–4 (1972), 137 -193 | MR | Zbl
, ,[18] New a priori estimates for Navier–Stokes equations in dimension 3, Commun. Partial Differ. Equ. 6 no. 3 (1981), 329 -359 | MR | Zbl
, , ,[19] On regularizing-decay rate estimates for solutions to the Navier–Stokes initial value problem, Nonlinear Analysis and Applications: To V. Lakshmikantham on His 80th birthday. vols. 1, 2, Kluwer Acad. Publ., Dordrecht (2003), 549 -562 | MR | Zbl
, ,[20] Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ (2004) | MR | Zbl
,[21] Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations, Commun. Math. Phys. 273 no. 1 (2007), 161 -176 | MR | Zbl
, , ,[22] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213 -231 | MR | Zbl
,[23] The fractal dimension of the singular set for solutions of the Navier–Stokes system, Nonlinearity 22 no. 12 (2009), 2889 -2900 | MR | Zbl
,[24] Uniqueness and smoothness of generalized solutions of Navier–Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5 (1967), 169 -185 | MR | EuDML | Zbl
,[25] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. vol. 23 , American Mathematical Society, Providence, RI (1967) | MR
, , ,[26] Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math. vol. 431 , Chapman & Hall/CRC, Boca Raton, FL (2002) | MR | Zbl
,[27] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 no. 1 (1934), 193 -248 | MR
,[28] A new proof of the Caffarelli–Kohn–Nirenberg theorem, Commun. Pure Appl. Math. 51 no. 3 (1998), 241 -257 | MR | Zbl
,[29] Mathematical topics in fluid mechanics, vol. 1, Incompressible Models, Oxford Sci. Publ., Oxford Lecture Ser. Math. Appl. vol. 3 , The Clarendon Press Oxford University Press, New York (1996) | Zbl
,[30] Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173 -182 | MR | Zbl
,[31] Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations, Nonlinearity 20 no. 5 (2007), 1185 -1191 | MR | Zbl
, ,[32] Aspects of Sobolev-Type Inequalities, Lond. Math. Soc. Lect. Note Ser. vol. 289 , Cambridge University Press, Cambridge (2002) | MR | Zbl
,[33] The Navier–Stokes equations on a bounded domain, Commun. Math. Phys. 73 no. 1 (1980), 1 -42 | MR | Zbl
,[34] On the decay of higher-order norms of the solutions of Navier–Stokes equations, Proc. R. Soc. Edinb., Sect. A 126 no. 3 (1996), 677 -685 | MR | Zbl
, ,[35] A new version of the Ladyzhenskaya–Prodi–Serrin condition, Algebra Anal. 18 no. 1 (2006), 124 -143 | MR
,[36] The initial value problem for the Navier–Stokes equations, Nonlinear Problems, Proc. Sympos., Madison, WI, Univ. of Wisconsin Press, Madison, WI (1963), 69 -98 | MR
,[37] Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 no. 1 (2007), 67 -112 | MR | Zbl
,[38] A priori estimates for solutions of second-order equations of parabolic type, Tr. Mat. Inst. Steklova 70 (1964), 133 -212 | MR | Zbl
,[39] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III, Princeton Math. Ser. vol. 43 , Princeton University Press, Princeton, NJ (1993) | MR | Zbl
,[40] On partial regularity results for the Navier–Stokes equations, Commun. Pure Appl. Math. 41 no. 4 (1988), 437 -458 | MR | Zbl
,[41] Higher derivatives estimate for the 3D Navier–Stokes equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 no. 5 (2010), 1189 -1204 | MR | Zbl | mathdoc-id
,[42] A new proof of partial regularity of solutions to Navier–Stokes equations, Nonlinear Differ. Equ. Appl. 14 no. 5–6 (2007), 753 -785 | MR | Zbl
,[43] A direct proof of the Caffarelli–Kohn–Nirenberg theorem, Parabolic and Navier–Stokes Equations. Part 2, Banach Cent. Publ. vol. 81 , Polish Acad. Sci. Inst. Math, Warsaw (2008), 533 -552 | MR | EuDML | Zbl
,Cité par Sources :