From homogenization to averaging in cellular flows
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 957-983 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We consider an elliptic eigenvalue problem with a fast cellular flow of amplitude A, in a two-dimensional domain with L 2 cells. For fixed A, and L, the problem homogenizes, and has been well studied. Also well studied is the limit when L is fixed, and A. In this case the solution equilibrates along stream lines.In this paper, we show that if both A and L, then a transition between the homogenization and averaging regimes occurs at AL 4 . When AL 4 , the principal Dirichlet eigenvalue is approximately constant. On the other hand, when AL 4 , the principal eigenvalue behaves like σ ¯(A)/L 2 , where σ ¯(A)AI is the effective diffusion matrix. A similar transition is observed for the solution of the exit time problem. The proof in the homogenization regime involves bounds on the second correctors. Miraculously, if the slow profile is quadratic, these estimates can be obtained using drift independent L p L estimates for elliptic equations with an incompressible drift. This provides effective sub- and super-solutions for our problem.

@article{AIHPC_2014__31_5_957_0,
     author = {Iyer, Gautam and Komorowski, Tomasz and Novikov, Alexei and Ryzhik, Lenya},
     title = {From homogenization to averaging in cellular flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {957--983},
     year = {2014},
     publisher = {Elsevier},
     volume = {31},
     number = {5},
     doi = {10.1016/j.anihpc.2013.06.003},
     mrnumber = {3258362},
     zbl = {1302.35039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.06.003/}
}
TY  - JOUR
AU  - Iyer, Gautam
AU  - Komorowski, Tomasz
AU  - Novikov, Alexei
AU  - Ryzhik, Lenya
TI  - From homogenization to averaging in cellular flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 957
EP  - 983
VL  - 31
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.06.003/
DO  - 10.1016/j.anihpc.2013.06.003
LA  - en
ID  - AIHPC_2014__31_5_957_0
ER  - 
%0 Journal Article
%A Iyer, Gautam
%A Komorowski, Tomasz
%A Novikov, Alexei
%A Ryzhik, Lenya
%T From homogenization to averaging in cellular flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 957-983
%V 31
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.06.003/
%R 10.1016/j.anihpc.2013.06.003
%G en
%F AIHPC_2014__31_5_957_0
Iyer, Gautam; Komorowski, Tomasz; Novikov, Alexei; Ryzhik, Lenya. From homogenization to averaging in cellular flows. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 957-983. doi: 10.1016/j.anihpc.2013.06.003

Cité par Sources :