Voir la notice de l'article provenant de la source Numdam
We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.
@article{AIHPC_2014__31_3_555_0, author = {Chae, Dongho and Degond, Pierre and Liu, Jian-Guo}, title = {Well-posedness for {Hall-magnetohydrodynamics}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {555--565}, publisher = {Elsevier}, volume = {31}, number = {3}, year = {2014}, doi = {10.1016/j.anihpc.2013.04.006}, mrnumber = {3208454}, zbl = {1297.35064}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.006/} }
TY - JOUR AU - Chae, Dongho AU - Degond, Pierre AU - Liu, Jian-Guo TI - Well-posedness for Hall-magnetohydrodynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 555 EP - 565 VL - 31 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.006/ DO - 10.1016/j.anihpc.2013.04.006 LA - en ID - AIHPC_2014__31_3_555_0 ER -
%0 Journal Article %A Chae, Dongho %A Degond, Pierre %A Liu, Jian-Guo %T Well-posedness for Hall-magnetohydrodynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 555-565 %V 31 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.006/ %R 10.1016/j.anihpc.2013.04.006 %G en %F AIHPC_2014__31_3_555_0
Chae, Dongho; Degond, Pierre; Liu, Jian-Guo. Well-posedness for Hall-magnetohydrodynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 555-565. doi : 10.1016/j.anihpc.2013.04.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.006/
[1] Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models 4 (2011), 901 -918 | MR | Zbl
, , , ,[2] Linear analysis of the Hall effect in protostellar disks, Astrophys. J. 552 (2001), 235 -247
, ,[3] On hydromagnetic waves in atmospheres with application to the sun, Theor. Comput. Fluid Dyn. 10 (1998), 37 -70 | Zbl
,[4] Nonlinear stability of a Vlasov equation for magnetic plasmas, Kinet. Relat. Models 6 (2013), 269 -290 | MR | Zbl
, , , ,[5] Perfect Incompressible Fluids, Clarendon Press, Oxford (1998) | MR
,[6] Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241 -279 | MR | Zbl
, ,[7] Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn. 62 (1991), 15 -36
,[8] An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II, Springer (1994) | MR | Zbl
,[9] Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D 208 (2005), 59 -72 | MR | Zbl
, ,[10] Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A 252 (1960), 397 -430 | MR | Zbl
,[11] Vorticity and Incompressible Flow, Cambridge University Press (2001) | MR
, ,[12] Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J. 587 (2003), 472 -481
, , ,[13] A review of magneto-vorticity induction in Hall-MHD plasmas, Plasma Phys. Control. Fusion 43 (2001), 195 -221
, ,[14] The Hall effect and the decay of magnetic fields, Astron. Astrophys. (1997), 685 -690
, ,[15] Tools for PDE. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials, American Mathematical Society (2000) | MR | Zbl
,[16] Theory of Function Spaces I, Birkhäuser Basel (1983) | MR
,[17] Star formation and the Hall effect, Astrophys. Space Sci. 292 (2004), 317 -323
,Cité par Sources :