Voir la notice de l'article provenant de la source Numdam
In this article, we establish the weighted Trudinger–Moser inequality of the scaling invariant form including its best constant and prove the existence of a maximizer for the associated variational problem. The non-singular case was treated by Adachi and Tanaka (1999) [1] and the existence of a maximizer is a new result even for the non-singular case. We also discuss the relation between the best constants of the weighted Trudinger–Moser inequality and the Caffarelli–Kohn–Nirenberg inequality in the asymptotic sense.
@article{AIHPC_2014__31_2_297_0, author = {Ishiwata, Michinori and Nakamura, Makoto and Wadade, Hidemitsu}, title = {On the sharp constant for the weighted {Trudinger{\textendash}Moser} type inequality of the scaling invariant form}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {297--314}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.03.004}, mrnumber = {3181671}, zbl = {1311.46034}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.004/} }
TY - JOUR AU - Ishiwata, Michinori AU - Nakamura, Makoto AU - Wadade, Hidemitsu TI - On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 297 EP - 314 VL - 31 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.004/ DO - 10.1016/j.anihpc.2013.03.004 LA - en ID - AIHPC_2014__31_2_297_0 ER -
%0 Journal Article %A Ishiwata, Michinori %A Nakamura, Makoto %A Wadade, Hidemitsu %T On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 297-314 %V 31 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.004/ %R 10.1016/j.anihpc.2013.03.004 %G en %F AIHPC_2014__31_2_297_0
Ishiwata, Michinori; Nakamura, Makoto; Wadade, Hidemitsu. On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 297-314. doi : 10.1016/j.anihpc.2013.03.004. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.004/
[1] A scale-invariant form of Trudinger–Moser inequality and its best exponent, Proc. Amer. Math. Soc. 1102 (1999), 148-153 | MR | Zbl
, ,[2] Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683-773 | MR | Zbl
, ,[3] Interpolation of Operators, Academic, New York (1988) | MR | Zbl
, ,[4] First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259-275 | MR | EuDML | Zbl | mathdoc-id
, , ,[5] Nontrivial solution of semilinear elliptic equation with critical exponent in , Comm. Partial Differential Equations 17 (1992), 407-435 | MR | Zbl
,[6] On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), 113-127 | MR | Zbl
, ,[7] Minimizers of Caffarelli–Kohn–Nirenberg inequalities on domains with the singularity on the boundary, Arch. Ration. Mech. Anal. 197 (2010), 401-432 | MR | Zbl
, ,[8] Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992), 471-479 | MR | EuDML | Zbl
,[9] Hardy–Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 767-793 | MR | EuDML | Zbl
, ,[10] Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap. 21867 (2006), 1-85 | MR | Zbl
, ,[11] The effect of curvature on the best constant in the Hardy–Sobolev inequalities, Geom. Funct. Anal. 16 (2006), 1201-1245 | MR | Zbl
, ,[12] Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal. 259 (2010), 1816-1849 | MR | Zbl
, , ,[13] Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser type inequalities in , Math. Ann. 351 (2011), 781-804 | MR | Zbl
,[14] Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality, Indiana Univ. Math. J. 55 (2006), 1951-1974 | MR | Zbl
, , ,[15] A sharp Trudinger–Moser type inequality for unbounded domains in , Indiana Univ. Math. J. 57 (2008), 451-480 | MR | Zbl
, ,[16] Extremal functions for Moser's inequality, Trans. Amer. Math. Soc. 348 (1996), 2663-2671 | MR | Zbl
,[17] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970), 1077-1092 | MR | Zbl
,[18] Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010), 3725-3757 | MR | Zbl
, ,[19] A proof of Trudinger's inequality and its application to nonlinear Schrodinger equation, Nonlinear Anal. 14 (1990), 765-769 | MR | Zbl
,[20] Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrodinger mixed problem, J. Math. Anal. Appl. 155 (1991), 531-540 | MR | Zbl
, ,[21] Characterization of Trudinger's inequality, J. Inequal. Appl. 1 (1997), 369-374 | MR | EuDML | Zbl
,[22] On critical cases of Sobolev's inequalities, J. Funct. Anal. 127 (1995), 259-269 | MR | Zbl
,[23] A sharp Trudinger–Moser type inequality for unbounded domains in , J. Funct. Anal. 219 (2005), 340-367 | MR | Zbl
,[24] Critical points of embeddings of into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 425-464 | MR | EuDML | Zbl | mathdoc-id
,[25] On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483 | MR | Zbl
,[26] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202 | MR | Zbl
,Cité par Sources :