Energy and local energy bounds for the 1-d cubic NLS equation in H -1 4
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988.

Voir la notice de l'article provenant de la source Numdam

We consider the cubic nonlinear Schrödinger equation (NLS) in one space dimension, either focusing or defocusing. We prove that the solutions satisfy a priori local in time H s bounds in terms of the H s size of the initial data for s-1 4. This improves earlier results of Christ, Colliander and Tao [3] and of the authors (Koch and Tataru, 2007 [13]). The new ingredients are a localization in space and local energy decay, which we hope to be of independent interest.

@article{AIHPC_2012__29_6_955_0,
     author = {Koch, Herbert and Tataru, Daniel},
     title = {Energy and local energy bounds for the 1-d cubic {NLS} equation in $ {H}^{-\frac{1}{4}}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {955--988},
     publisher = {Elsevier},
     volume = {29},
     number = {6},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.05.006},
     zbl = {1280.35137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/}
}
TY  - JOUR
AU  - Koch, Herbert
AU  - Tataru, Daniel
TI  - Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 955
EP  - 988
VL  - 29
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/
DO  - 10.1016/j.anihpc.2012.05.006
LA  - en
ID  - AIHPC_2012__29_6_955_0
ER  - 
%0 Journal Article
%A Koch, Herbert
%A Tataru, Daniel
%T Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 955-988
%V 29
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/
%R 10.1016/j.anihpc.2012.05.006
%G en
%F AIHPC_2012__29_6_955_0
Koch, Herbert; Tataru, Daniel. Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988. doi : 10.1016/j.anihpc.2012.05.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/

[1] S.A. Akhmanov, R.V. Khokhlov, A.P. Sukhorukov, Self-focusing and self-trapping of intense light beams in a nonlinear medium, Zh. Eksp. Teor. Fiz. 50 (1966), 1537-1549

[2] Michael Christ, personal communication.

[3] Michael Christ, James Colliander, Terrence Tao, A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, arXiv:math.AP/0612457 | MR | Zbl

[4] Michael Christ, James Colliander, Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 no. 6 (2003), 1235-1293 | MR | Zbl

[5] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 no. 2 (1993), 295-368 | MR | Zbl

[6] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 no. 2 (1998), 523-530 | MR | Zbl

[7] Martin Hadac, Sebastian Herr, Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941 | MR | EuDML | Zbl | mathdoc-id

[8] Shan Jin, C. David Levermore, David W. Mclaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. 52 no. 5 (1999), 613-654 | MR | Zbl

[9] S. Kamvissis, Long time behavior for semiclassical NLS, Appl. Math. Lett. 12 no. 8 (1999), 35-57 | MR | Zbl

[10] Spyridon Kamvissis, Kenneth D.T.-R. Mclaughlin, Peter D. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. of Math. Stud. vol. 154, Princeton University Press, Princeton, NJ (2003) | MR | Zbl

[11] Carlos E. Kenig, Gustavo Ponce, Luis Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 no. 3 (2001), 617-633 | MR | Zbl

[12] Herbert Koch, Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 no. 2 (2005), 217-284 | MR | Zbl

[13] Herbert Koch, Daniel Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 2007 no. 16 (2007) | MR | Zbl

[14] Tadahiro Oh, Catherine Sulem, On the one-dimensional cubic nonlinear Schrödinger equation below L 2 , arXiv:1007.2073v2 (2010) | MR | Zbl

[15] Junkichi Satsuma, Nobuo Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theoret. Phys. Suppl. 55 (1974), 284-306 | MR

[16] Terence Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. vol. 106 (2006) | MR | Zbl

[17] Laurent Thomann, Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations 245 no. 1 (2008), 249-280 | MR | Zbl

Cité par Sources :