Voir la notice de l'article provenant de la source Numdam
We consider the cubic nonlinear Schrödinger equation (NLS) in one space dimension, either focusing or defocusing. We prove that the solutions satisfy a priori local in time bounds in terms of the size of the initial data for . This improves earlier results of Christ, Colliander and Tao [3] and of the authors (Koch and Tataru, 2007 [13]). The new ingredients are a localization in space and local energy decay, which we hope to be of independent interest.
@article{AIHPC_2012__29_6_955_0, author = {Koch, Herbert and Tataru, Daniel}, title = {Energy and local energy bounds for the 1-d cubic {NLS} equation in $ {H}^{-\frac{1}{4}}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {955--988}, publisher = {Elsevier}, volume = {29}, number = {6}, year = {2012}, doi = {10.1016/j.anihpc.2012.05.006}, zbl = {1280.35137}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/} }
TY - JOUR AU - Koch, Herbert AU - Tataru, Daniel TI - Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 955 EP - 988 VL - 29 IS - 6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/ DO - 10.1016/j.anihpc.2012.05.006 LA - en ID - AIHPC_2012__29_6_955_0 ER -
%0 Journal Article %A Koch, Herbert %A Tataru, Daniel %T Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 955-988 %V 29 %N 6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/ %R 10.1016/j.anihpc.2012.05.006 %G en %F AIHPC_2012__29_6_955_0
Koch, Herbert; Tataru, Daniel. Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988. doi : 10.1016/j.anihpc.2012.05.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/
[1] Self-focusing and self-trapping of intense light beams in a nonlinear medium, Zh. Eksp. Teor. Fiz. 50 (1966), 1537-1549
, , ,[2] Michael Christ, personal communication.
[3] A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, arXiv:math.AP/0612457 | MR | Zbl
, , ,[4] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 no. 6 (2003), 1235-1293 | MR | Zbl
, , ,[5] A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 no. 2 (1993), 295-368 | MR | Zbl
, ,[6] Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 no. 2 (1998), 523-530 | MR | Zbl
,[7] Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 917-941 | MR | EuDML | Zbl | mathdoc-id
, , ,[8] The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. 52 no. 5 (1999), 613-654 | MR | Zbl
, , ,[9] Long time behavior for semiclassical NLS, Appl. Math. Lett. 12 no. 8 (1999), 35-57 | MR | Zbl
,[10] Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. of Math. Stud. vol. 154, Princeton University Press, Princeton, NJ (2003) | MR | Zbl
, , ,[11] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 no. 3 (2001), 617-633 | MR | Zbl
, , ,[12] Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 no. 2 (2005), 217-284 | MR | Zbl
, ,[13] A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 2007 no. 16 (2007) | MR | Zbl
, ,[14] On the one-dimensional cubic nonlinear Schrödinger equation below , arXiv:1007.2073v2 (2010) | MR | Zbl
, ,[15] Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Progr. Theoret. Phys. Suppl. 55 (1974), 284-306 | MR
, ,[16] Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. vol. 106 (2006) | MR | Zbl
,[17] Instabilities for supercritical Schrödinger equations in analytic manifolds, J. Differential Equations 245 no. 1 (2008), 249-280 | MR | Zbl
,Cité par Sources :