Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 989-1007.

Voir la notice de l'article provenant de la source Numdam

In this article, we study the minimizing measures of the Tonelli Hamiltonians. More precisely, we study the relationships between the so-called Green bundles and various notions as:•the Lyapunov exponents of minimizing measures;•the weak KAM solutions. In particular, we deduce that the support of every minimizing measure μ, all of whose Lyapunov exponents are zero, is C 1 -regular μ-almost everywhere.

Dans cet article, on étudie les mesures minimisantes de Hamiltoniens de Tonelli. Plus précisément, on explique quelles relations existent entre les fibrés de Green et différentes notions comme :•les exposants de Lyapunov des mesures minimisantes ;•les solutions KAM faibles. On en déduit par exemple que si tous les exposants de Lyapunov dʼune mesure minimisante μ sont nuls, alors le support de cette mesure est C 1 -régulier en μ-presque tout point.

DOI : 10.1016/j.anihpc.2012.04.007
Classification : 37J50, 35D40, 37C40, 34D08, 35D65
Keywords: Minimizing orbits and measures, Lyapunov exponents, Weak KAM theory, Green bundles, Regularity of solutions to Hamilton–Jacobi equations
Mots-clés : Orbites et mesures minimisantes, Exposants de Lyapunov, Théorie KAM faible, Fibrés de Green, Régularité des solutions de lʼéquation de Hamilton–Jacobi
@article{AIHPC_2012__29_6_989_0,
     author = {Arnaud, M.-C.},
     title = {Green bundles, {Lyapunov} exponents and regularity along the supports of the minimizing measures},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {989--1007},
     publisher = {Elsevier},
     volume = {29},
     number = {6},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.04.007},
     mrnumber = {2995103},
     zbl = {1269.37031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.007/}
}
TY  - JOUR
AU  - Arnaud, M.-C.
TI  - Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 989
EP  - 1007
VL  - 29
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.007/
DO  - 10.1016/j.anihpc.2012.04.007
LA  - en
ID  - AIHPC_2012__29_6_989_0
ER  - 
%0 Journal Article
%A Arnaud, M.-C.
%T Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 989-1007
%V 29
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.007/
%R 10.1016/j.anihpc.2012.04.007
%G en
%F AIHPC_2012__29_6_989_0
Arnaud, M.-C. Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 989-1007. doi : 10.1016/j.anihpc.2012.04.007. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.007/

[1] M.-C. Arnaud, Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli, Ann. Henri Poincaré 9 no. 5 (2008), 881-926 | MR

[2] M.-C. Arnaud, Three results on the regularity of the curves that are invariant by an exact symplectic twist map, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 1-17 | MR | EuDML | Zbl | mathdoc-id

[3] M.-C. Arnaud, The link between the shape of the Aubry–Mather sets and their Lyapunov exponents, Ann. of Math. 174 no. 3 (2011), 1571-1601 | MR | Zbl

[4] P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc. 21 no. 3 (2008), 615-669 | MR | Zbl

[5] G.D. Birkhoff, Surface transformations and their dynamical application, Acta Math. 43 (1920), 1-119 | MR | JFM

[6] J. Bochi, M. Viana, Lyapunov exponents: how frequently are dynamical systems hyperbolic?, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge (2004), 271-297 | MR | Zbl

[7] G. Bouligand, Introduction à la géométrie infinitésimale directe, Librairie Vuibert, Paris (1932) | JFM

[8] G. Contreras, R. Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems 19 no. 4 (1999), 901-952 | MR | Zbl

[9] P. Eberlein, When is a geodesic flow of Anosov type? I, J. Differential Geom. 8 (1973), 437-463 P. Eberlein, When is a geodesic flow of Anosov type? II, J. Differential Geom. 8 (1973), 565-577 | MR | Zbl

[10] A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, in preparation.

[11] A. Fathi, Regularity of C 1 solutions of the Hamilton–Jacobi equation, Ann. Fac. Sci. Toulouse Math. (6) 12 no. 4 (2003), 479-516 | MR | EuDML | Zbl | mathdoc-id

[12] A. Freire, R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 no. 3 (1982), 375-392 | MR | EuDML | Zbl

[13] L.W. Green, A theorem of E. Hopf, Michigan Math. J. 5 (1958), 31-34 | MR | Zbl

[14] M. Herman, Sur les courbes invariantes par les difféomorphismes de lʼanneau, vol. 1, Asterisque 103–104 (1983) | MR | mathdoc-id

[15] M. Herman, Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques, vol. I, Inst. Hautes Études Sci. Publ. Math. 70 (1989), 47-101 | MR | EuDML | Zbl | mathdoc-id

[16] R. Iturriaga, A geometric proof of the existence of the Green bundles, Proc. Amer. Math. Soc. 130 no. 8 (2002), 2311-2312 | MR | Zbl

[17] R. Mañé, Global Variational Methods in Conservative Dynamics, 18 Coloquio Brasileiro de Matematica, IMPA (1991)

[18] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351-370 | MR | Zbl

[19] J.N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 no. 2 (1991), 169-207 | MR | EuDML | Zbl

Cité par Sources :