Voir la notice de l'article provenant de la source Numdam
We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels. More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the symmetric parts of the kernels have a fixed homogeneity σ and the skew symmetric parts have strictly smaller homogeneity τ. We prove a weak ABP estimate and regularity. Our estimates remain uniform as we take and so that this extends the regularity theory for elliptic differential equations with dependence on the gradient.
@article{AIHPC_2012__29_6_833_0, author = {Chang Lara, H\'ector and D\'avila, Gonzalo}, title = {Regularity for solutions of nonlocal, nonsymmetric equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {833--859}, publisher = {Elsevier}, volume = {29}, number = {6}, year = {2012}, doi = {10.1016/j.anihpc.2012.04.006}, mrnumber = {2995098}, zbl = {1317.35278}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.006/} }
TY - JOUR AU - Chang Lara, Héctor AU - Dávila, Gonzalo TI - Regularity for solutions of nonlocal, nonsymmetric equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 833 EP - 859 VL - 29 IS - 6 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.006/ DO - 10.1016/j.anihpc.2012.04.006 LA - en ID - AIHPC_2012__29_6_833_0 ER -
%0 Journal Article %A Chang Lara, Héctor %A Dávila, Gonzalo %T Regularity for solutions of nonlocal, nonsymmetric equations %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 833-859 %V 29 %N 6 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.006/ %R 10.1016/j.anihpc.2012.04.006 %G en %F AIHPC_2012__29_6_833_0
Chang Lara, Héctor; Dávila, Gonzalo. Regularity for solutions of nonlocal, nonsymmetric equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 833-859. doi : 10.1016/j.anihpc.2012.04.006. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.04.006/
[1] Second-order elliptic integro differential equations: viscosity solutions theory revisited, Annales de lʼInstitut Henri Poincaré, Analyse Non Linéaire 3 (2008), 567-585 | MR | EuDML | Zbl | mathdoc-id
, ,[2] Hölder continuity of harmonic functions with respect to operators of variable order, Communications in Partial Differential Equations 8 (2005), 1249-1259 | MR | Zbl
, ,[3] Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications vol. 43, American Mathematical Society, Providence, RI (1995) | MR | Zbl
, ,[4] Regularity theory for fully nonlinear integro differential equations, Communications on Pure and Applied Mathematics 5 (2009), 597-638 | MR | Zbl
, ,[5] Regularity results for nonlocal equations by approximation, Archive for Rational Mechanics and Analysis 1 (2011), 59-88 | MR | Zbl
, ,[6] The Evans–Krylov theorem for non local fully non linear equations, Annals of Mathematics 2 (2011), 1163-1187 | MR | Zbl
, ,[7] Regularity results for fully nonlinear integro differential operators with nonsymmetric positive kernels, arXiv:1011.3565v2 [math.AP] | MR | Zbl
, ,[8] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal 3 (2006), 1155-1174 | MR | Zbl
,[9] Optimal control with state-space constraint II, SIAM Journal on Control and Optimization 6 (1986), 1110-1122 | MR | Zbl
,Cité par Sources :