Voir la notice de l'article provenant de la source Numdam
We consider the quintic nonlinear Schrödinger equation (NLS) on the circle
Nous considérons lʼéquation de Schrödinger non linéaire (NLS) quintique sur le cercle
@article{AIHPC_2012__29_3_455_0, author = {Gr\'ebert, Beno{\^\i}t and Thomann, Laurent}, title = {Resonant dynamics for the quintic nonlinear {Schr\"odinger} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {455--477}, publisher = {Elsevier}, volume = {29}, number = {3}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.005}, mrnumber = {2926244}, zbl = {1259.37045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.01.005/} }
TY - JOUR AU - Grébert, Benoît AU - Thomann, Laurent TI - Resonant dynamics for the quintic nonlinear Schrödinger equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 455 EP - 477 VL - 29 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.01.005/ DO - 10.1016/j.anihpc.2012.01.005 LA - en ID - AIHPC_2012__29_3_455_0 ER -
%0 Journal Article %A Grébert, Benoît %A Thomann, Laurent %T Resonant dynamics for the quintic nonlinear Schrödinger equation %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 455-477 %V 29 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.01.005/ %R 10.1016/j.anihpc.2012.01.005 %G en %F AIHPC_2012__29_3_455_0
Grébert, Benoît; Thomann, Laurent. Resonant dynamics for the quintic nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 455-477. doi : 10.1016/j.anihpc.2012.01.005. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.01.005/
[1] Mathematical Methods of Classical Mechanics, Grad. Texts in Math. vol. 60, Springer-Verlag, New York (1989) | MR
,[2] Birkhoff normal form for PDEs with tame modulus, Duke Math. J. 135 (2006), 507-567 | MR | Zbl
, ,[3] On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal. 229 no. 1 (2005), 62-94 | MR | Zbl
,[4] Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181 no. 1 (2010), 39-113 | MR | Zbl
, , , , ,[5] A Nekhoroshev type theorem for the nonlinear Schrödinger equation on the torus, arXiv:1003.4845 | MR | Zbl
, ,[6] Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, Sémin. Congr. vol. 15, Soc. Math. France, Paris (2007), 1-46 | MR | Zbl
,[7] Perturbations of the defocusing nonlinear Schrödinger equation, Milan J. Math. 71 (2003), 141-174 | MR | Zbl
, ,[8] The defocusing NLS equation and its normal form, arXiv:0907.3938 | MR | Zbl
, , ,[9] On the energy exchange between resonant modes in nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 no. 1 (2011), 127-134 | MR | Zbl | mathdoc-id
, ,[10] Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys. 285 no. 3 (2009), 1087-1107 | MR | Zbl
, , , ,[11] Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. 143 (1996), 149-179 | MR | Zbl
, ,[12] Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal. 36 no. 6 (2005), 1965-1990 | MR | Zbl
, ,Cité par Sources :