Voir la notice de l'article provenant de la source Numdam
Using spatial domain techniques developed by the authors and Myunghyun Oh in the context of parabolic conservation laws, we establish under a natural set of spectral stability conditions nonlinear asymptotic stability with decay at Gaussian rate of spatially periodic traveling waves of systems of reaction–diffusion equations. In the case that wave-speed is identically zero for all periodic solutions, we recover and slightly sharpen a well-known result of Schneider obtained by renormalization/Bloch transform techniques; by the same arguments, we are able to treat the open case of nonzero wave-speeds to which Schneiderʼs renormalization techniques do not appear to apply.
@article{AIHPC_2011__28_4_471_0, author = {Johnson, Mathew A. and Zumbrun, Kevin}, title = {Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction{\textendash}diffusion equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {471--483}, publisher = {Elsevier}, volume = {28}, number = {4}, year = {2011}, doi = {10.1016/j.anihpc.2011.05.003}, mrnumber = {2823880}, zbl = {1246.35034}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.05.003/} }
TY - JOUR AU - Johnson, Mathew A. AU - Zumbrun, Kevin TI - Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 471 EP - 483 VL - 28 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.05.003/ DO - 10.1016/j.anihpc.2011.05.003 LA - en ID - AIHPC_2011__28_4_471_0 ER -
%0 Journal Article %A Johnson, Mathew A. %A Zumbrun, Kevin %T Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 471-483 %V 28 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.05.003/ %R 10.1016/j.anihpc.2011.05.003 %G en %F AIHPC_2011__28_4_471_0
Johnson, Mathew A.; Zumbrun, Kevin. Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 471-483. doi : 10.1016/j.anihpc.2011.05.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2011.05.003/
[1] The dynamics of modulated wavetrains, Mem. Amer. Math. Soc. 199 no. 934 (2009) | MR
, , , ,[2] On the structure of the spectra of periodic traveling waves, J. Math. Pures Appl. 72 (1993), 415-439 | MR | Zbl
,[3] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, Berlin (1981) | MR | Zbl
,[4] Nonlinear stability of periodic traveling waves of viscous conservation laws in the generic case, J. Differential Equations 249 no. 5 (2010), 1213-1240 | MR | Zbl
, ,[5] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg (1985) | MR
,[6] Stability and diffusive dynamics on extended domains, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin (2001), 563-583 | MR | Zbl
, , ,[7] Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions, Arch. Ration. Mech. Anal. 196 no. 1 (2010), 1-20, Arch. Ration. Mech. Anal. 196 no. 1 (2010), 21-23 | MR | Zbl
, ,[8] Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. vol. 44, Springer-Verlag, New York, Berlin (1983) | MR | Zbl
,[9] B. Sandstede, A. Scheel, G. Schneider, H. Uecker, Diffusive mixing of periodic wave trains in reaction–diffusion systems with different phases at infinity, draft, 2010. | MR
[10] Nonlinear diffusive stability of spatially periodic solutions – abstract theorem and higher space dimensions, Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems, Sendai, 1997, Tohoku Math. Publ. vol. 8, Tohoku Univ., Sendai (1998), 159-167 | MR | Zbl
,[11] Diffusive stability of rolls in the two-dimensional real and complex Swift–Hohenberg equation, Comm. Partial Differential Equations 24 no. 11–12 (1999), 2109-2146 | MR | Zbl
,Cité par Sources :