Voir la notice de l'article provenant de la source Numdam
We consider solutions of the focusing cubic and quintic Gross–Pitaevskii (GP) hierarchies. We identify an observable corresponding to the average energy per particle, and we prove that it is a conserved quantity. We prove that all solutions to the focusing GP hierarchy at the -critical or -supercritical level blow up in finite time if the energy per particle in the initial condition is negative. Our results do not assume any factorization of the initial data.
@article{AIHPC_2010__27_5_1271_0, author = {Chen, Thomas and Pavlovi\'c, Nata\v{s}a and Tzirakis, Nikolaos}, title = {Energy conservation and blowup of solutions for focusing {Gross{\textendash}Pitaevskii} hierarchies}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1271--1290}, publisher = {Elsevier}, volume = {27}, number = {5}, year = {2010}, doi = {10.1016/j.anihpc.2010.06.003}, mrnumber = {2683760}, zbl = {1200.35253}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.06.003/} }
TY - JOUR AU - Chen, Thomas AU - Pavlović, Nataša AU - Tzirakis, Nikolaos TI - Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1271 EP - 1290 VL - 27 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.06.003/ DO - 10.1016/j.anihpc.2010.06.003 LA - en ID - AIHPC_2010__27_5_1271_0 ER -
%0 Journal Article %A Chen, Thomas %A Pavlović, Nataša %A Tzirakis, Nikolaos %T Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1271-1290 %V 27 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.06.003/ %R 10.1016/j.anihpc.2010.06.003 %G en %F AIHPC_2010__27_5_1271_0
Chen, Thomas; Pavlović, Nataša; Tzirakis, Nikolaos. Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 5, pp. 1271-1290. doi : 10.1016/j.anihpc.2010.06.003. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.06.003/
[1] Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys. 127 no. 6 (2007), 1194-1220 | MR | Zbl
, , ,[2] Bose–Einstein quantum phase transition in an optical lattice model, Phys. Rev. A 70 (2004), 023612 | Zbl
, , , , ,[3] The Hartree–von Neumann limit of many body dynamics, http://arxiv.org/abs/0904.4514 | Zbl
, ,[4] Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal. 203 no. 1 (2003), 44-92 | MR | Zbl
, , , ,[5] Semilinear Schrödinger Equations, Courant Lect. Notes vol. 10, Amer. Math. Soc. (2003) | MR | Zbl
,[6] The quintic NLS as the mean field limit of a Boson gas with three-body interactions, http://arxiv.org/abs/0812.2740 | MR | Zbl
, ,[7] On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. Ser. A 27 no. 2 (2010), 715-739 | MR | Zbl
, ,[8] Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal. 179 no. 2 (2006), 265-283 | MR | Zbl
, , , ,[9] Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 no. 4 (2007), 500-545 | MR | Zbl
, ,[10] Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate, Comm. Pure Appl. Math. 59 no. 12 (2006), 1659-1741 | MR | Zbl
, , ,[11] Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), 515-614 | MR | Zbl
, , ,[12] Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. 172 no. 1 (2010), 291-370 | MR | Zbl
, , ,[13] Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 no. 6 (2001), 1169-1205 | MR | Zbl
, ,[14] Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Comm. Math. Phys. 271 no. 3 (2007), 681-697 | MR | Zbl
, , ,[15] Atomism and quantization, J. Phys. A 40 no. 12 (2007), 3033-3045 | MR | Zbl
, , ,[16] On the mean-field limit of bosons with Coulomb two-body interaction, Comm. Math. Phys. 288 no. 3 (2009), 1023-1059 | MR | Zbl
, , ,[17] L. Glangetas, F. Merle, A geometrical approach of existence of blow up solutions in for nonlinear Schrödinger equation, Rep. No. R95031, Laboratoire d'Analyse Numérique, Univ. Pierre and Marie Curie, 1995.
[18] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys. 18 no. 9 (1977), 1794-1797 | MR | Zbl
,[19] Second-order corrections to mean field evolution for weakly interacting bosons. I, Comm. Math. Phys. 294 no. 1 (2010), 273-301 | MR | Zbl
, , ,[20] A priori estimates for many-body Hamiltonian evolution of interacting boson system, J. Hyperbolic Differ. Equ. 5 no. 4 (2008), 857-883 | MR | Zbl
, ,[21] The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 | MR
,[22] Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics, arXiv:0808.0505 | MR | Zbl
, , ,[23] On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys. 279 no. 1 (2008), 169-185 | MR | Zbl
, ,[24] Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409
, ,[25] The Mathematics of the Bose Gas and Its Condensation, Birkhäuser (2005) | MR | Zbl
, , , ,[26] A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys. 224 (2001) | MR | Zbl
, , ,[27] Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52 no. 2 (1999), 193-270 | MR
,[28] Blow-up of solutions for the one-dimensional nonlinear Schrödinger equations with critical power nonlinearity, Proc. Amer. Math. Soc. 111 no. 2 (1991), 487-496 | MR | Zbl
, ,[29] Quantum fluctuations and rate of convergence towards mean field dynamics, Comm. Math. Phys. 291 no. 1 (2009), 31-61 | MR | Zbl
, ,[30] Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 52 no. 3 (1980), 569-615 | MR
,[31] Nonexistence of global solutions to the Cauchy problem for the damped non-linear Schrödinger equations, SIAM J. Math. Anal. 15 (1984), 357-366 | MR | Zbl
,[32] Averaged description of wave beams in linear and nonlinear media (the method of moments), Radiophys. and Quantum Electronics 14 (1971), 1062-1070, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14 (1971), 1353-1363
, , ,Cité par Sources :