Voir la notice de l'article provenant de la source Numdam
We prove that the quintic Schrödinger equation with Dirichlet boundary conditions is locally well posed for data on any smooth, non-trapping domain . The key ingredient is a smoothing effect in for the linear equation. We also derive scattering results for the whole range of defocusing sub quintic Schrödinger equations outside a star-shaped domain.
@article{AIHPC_2010__27_5_1153_0, author = {Ivanovici, Oana and Planchon, Fabrice}, title = {On the energy critical {Schr\"odinger} equation in {3\protect\emph{D}} non-trapping domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1153--1177}, publisher = {Elsevier}, volume = {27}, number = {5}, year = {2010}, doi = {10.1016/j.anihpc.2010.04.001}, mrnumber = {2683754}, zbl = {1200.35066}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.04.001/} }
TY - JOUR AU - Ivanovici, Oana AU - Planchon, Fabrice TI - On the energy critical Schrödinger equation in 3D non-trapping domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1153 EP - 1177 VL - 27 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.04.001/ DO - 10.1016/j.anihpc.2010.04.001 LA - en ID - AIHPC_2010__27_5_1153_0 ER -
%0 Journal Article %A Ivanovici, Oana %A Planchon, Fabrice %T On the energy critical Schrödinger equation in 3D non-trapping domains %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1153-1177 %V 27 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.04.001/ %R 10.1016/j.anihpc.2010.04.001 %G en %F AIHPC_2010__27_5_1153_0
Ivanovici, Oana; Planchon, Fabrice. On the energy critical Schrödinger equation in 3D non-trapping domains. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 5, pp. 1153-1177. doi : 10.1016/j.anihpc.2010.04.001. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2010.04.001/
[1] Global existence for defocusing cubic NLS and Gross–Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89 no. 4 (2008), 335-354 | MR | Zbl
,[2] On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 no. 3 (2004), 295-318 | MR | EuDML | Zbl | mathdoc-id
, , ,[3] Estimations de Strichartz pour des perturbations à longue portée de l'opérateur de Schrödinger, Séminaire: Équations aux Dérivées Partielles, 2001–2002, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2002) | EuDML
,[4] Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc. 21 no. 3 (2008), 831-845 | MR | Zbl
, , ,[5] Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications, J. Funct. Anal. 236 no. 1 (2006), 265-298 | MR | Zbl
, ,[6] Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math. 131 no. 6 (2009), 1715-1742 | MR | Zbl
, ,[7] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. 14 no. 10 (1990), 807-836 | MR | Zbl
, ,[8] Maximal functions associated to filtrations, J. Funct. Anal. 179 no. 2 (2001), 409-425 | Zbl
, ,[9] Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math. (2) 167 no. 3 (2008), 767-865 | Zbl
, , , , ,[10] The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 no. 4 (1985), 309-327 | EuDML | Zbl | mathdoc-id
, ,[11] Precise smoothing effect in the exterior of balls, Asymptot. Anal. 53 no. 4 (2007), 189-208 | Zbl
,[12] Counter example to Strichartz estimates for the wave equation in domains, Math. Ann. 347 (2010), 627-673, http://dx.doi.org/10.1007/s00208-009-0454-1 | Zbl
,[13] On the Schrodinger equation outside strictly convex obstacles, arXiv:0809.1060 [math.AP] (2008) | Zbl
,[14] Square function and heat flow estimates on domains, arXiv:0812.2733 [math.AP] (2008)
, ,[15] Dispersive estimates and the 2D cubic NLS equation, J. Anal. Math. 86 (2002), 319-334 | Zbl
,[16] Bilinear virial identities and applications, Ann. Sci. École. Norm. Sup. 42 (2009), 261-290 | EuDML | Zbl | mathdoc-id
, ,[17] On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 no. 4 (1995), 879-916 | Zbl
, ,[18] On the norm of spectral clusters for compact manifolds with boundary, Acta Math. 198 no. 1 (2007), 107-153 | Zbl
, ,[19] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 no. 7–8 (2002), 1337-1372 | Zbl
, ,Cité par Sources :