Statistical stability for Hénon maps of the Benedicks–Carleson type
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 595-637.

Voir la notice de l'article provenant de la source Numdam

We consider the family of Hénon maps in the plane and show that the SRB measures vary continuously in the weak∗ topology within the set of Benedicks–Carleson parameters.

DOI : 10.1016/j.anihpc.2009.09.009
Classification : 37C40, 37C75, 37D25
Keywords: Hénon attractor, SRB measure, Statistical stability
@article{AIHPC_2010__27_2_595_0,
     author = {Alves, Jos\'e F. and Carvalho, Maria and Freitas, Jorge Milhazes},
     title = {Statistical stability for {H\'enon} maps of the {Benedicks{\textendash}Carleson} type},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {595--637},
     publisher = {Elsevier},
     volume = {27},
     number = {2},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.09.009},
     mrnumber = {2595193},
     zbl = {1205.37040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.09.009/}
}
TY  - JOUR
AU  - Alves, José F.
AU  - Carvalho, Maria
AU  - Freitas, Jorge Milhazes
TI  - Statistical stability for Hénon maps of the Benedicks–Carleson type
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 595
EP  - 637
VL  - 27
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.09.009/
DO  - 10.1016/j.anihpc.2009.09.009
LA  - en
ID  - AIHPC_2010__27_2_595_0
ER  - 
%0 Journal Article
%A Alves, José F.
%A Carvalho, Maria
%A Freitas, Jorge Milhazes
%T Statistical stability for Hénon maps of the Benedicks–Carleson type
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 595-637
%V 27
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.09.009/
%R 10.1016/j.anihpc.2009.09.009
%G en
%F AIHPC_2010__27_2_595_0
Alves, José F.; Carvalho, Maria; Freitas, Jorge Milhazes. Statistical stability for Hénon maps of the Benedicks–Carleson type. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 595-637. doi : 10.1016/j.anihpc.2009.09.009. http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2009.09.009/

[1] J.F. Alves, M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems 22 (2002), 1-32 | MR | Zbl

[2] M. Benedicks, L. Carleson, On iterations of 1-ax 2 on (-1,1), Ann. of Math. 122 (1985), 1-25 | MR | Zbl

[3] M. Benedicks, L. Carleson, The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169 | MR | Zbl

[4] M. Benedicks, M. Viana, Random perturbations and statistical properties of Hénon-like maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 5 (2006), 713-752 | MR | EuDML | Zbl | mathdoc-id

[5] M. Benedicks, M. Viana, Solution of the basin problem for Hénon-like attractors, Invent. Math. 143 (2001), 375-434 | MR | Zbl

[6] M. Benedicks, L. Young, Sinai–Bowen–Ruelle measures for certain Hénon maps, Invent. Math. 112 (1993), 541-576 | MR | EuDML | Zbl

[7] M. Benedicks, L. Young, Markov extensions and decay of correlations for certain Hénon maps, Astérisque 261 (2000), 13-56 | MR | Zbl | mathdoc-id

[8] C. Bonatti, L.J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag (2005) | MR | Zbl

[9] R. Bowen, Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. vol. 470, Springer-Verlag (1975) | MR | Zbl

[10] P. Collet, J. Eckmann, On the abundance of aperiodic behavior for maps on the interval, Comm. Math. Phys. 73 (1980), 115-160 | MR | Zbl

[11] P. Collet, J.P. Eckmann, On the abundance of aperiodic behavior for maps on the interval, Bull. Amer. Math. Soc. 3 no. 1 (1980), 699-700 | MR | Zbl

[12] P. Collet, J.P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), 13-46 | MR | Zbl

[13] J.M. Freitas, Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps, Nonlinearity 18 (2005), 831-854 | MR | Zbl

[14] M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77 | MR | Zbl

[15] M. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press Inc. (1974) | MR | Zbl

[16] M. Jakobson, Absolutely continuous invariant measures for one parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39-88 | MR | Zbl

[17] S. Luzzatto, M. Viana, Parameter exclusions in Hénon-like systems, Russian Math. Surveys 58 (2003), 1053-1092 | Zbl

[18] L. Mora, M. Viana, Abundance of strange attractors, Acta Math. 171 (1993), 1-71 | MR | Zbl

[19] S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18 | MR | Zbl

[20] S. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 101-152 | MR | EuDML | Zbl | mathdoc-id

[21] J.B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izv. 10 (1978), 1261-1305 | Zbl

[22] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 27-58 | MR | EuDML | Zbl | mathdoc-id

[23] M. Rychlik, E. Sorets, Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys. 150 no. 2 (1992), 217-236 | MR | Zbl

[24] H. Thunberg, Unfolding of chaotic unimodal maps and the parameter dependence of natural measures, Nonlinearity 14 no. 2 (2001), 323-337 | MR | Zbl

[25] M. Tsujii, On continuity of Bowen–Ruelle–Sinai measures in families of one dimensional maps, Comm. Math. Phys. 177 no. 1 (1996), 1-11 | MR | Zbl

[26] R. Ures, On the approximation of Hénon-like attractors by homoclinic tangencies, Ergodic Theory Dynam. Systems 15 (1995), 1223-1229 | MR | Zbl

[27] R. Ures, Hénon attractors: SRB measures and Dirac measures for sinks, 1st International Conference on Dynamical Systems – A Tribute to Ricardo Mañé, Montevideo, Uruguay, 1995, Pitman Res. Notes Math. Ser. vol. 362, Longman, Harlow (1996), 214-219 | Zbl

[28] Q. Wang, L.S. Young, Strange attractors with one direction of instability, Comm. Math. Phys. 218 (2001), 1-97 | MR | Zbl

[29] L.S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998), 585-650 | MR | Zbl

Cité par Sources :