Algebraic Geometry
Green–Lazarsfeld's conjecture for generic curves of large gonality
[La conjecture de Green–Lazarsfeld pour les courbes génériques de gonalité élevée]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 335-339.

Voir la notice de l'article provenant de la source Numdam

We use Green's canonical syzygy conjecture for generic curves to prove that the Green–Lazarsfeld gonality conjecture holds for generic curves of genus g, and gonality d, if g/3<d<[g/2]+2.

Nous utilisons la conjecture de Green sur les syzygies canoniques des courbes génériques pour démontrer la conjecture de la gonalité de Green–Lazarsfeld pour les courbes génériques de genre g et gonalité d, avec g/3<d<[g/2]+2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00062-1

Aprodu, Marian 1, 2 ; Voisin, Claire 3

1 Université de Grenoble 1, laboratoire de mathématiques, institut Fourier, BP 74, 38402 Saint Martin d'Hères cedex, France
2 Romanian Academy, Institute of Mathematics “Simion Stoilow”, PO Box 1-764, 70700, Bucharest, Romania
3 Université Paris 7 Denis Diderot, CNRS UMR 7586, institut de mathématiques, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2003__336_4_335_0,
     author = {Aprodu, Marian and Voisin, Claire},
     title = {Green{\textendash}Lazarsfeld's conjecture for generic curves of large gonality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {335--339},
     publisher = {Elsevier},
     volume = {336},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00062-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/}
}
TY  - JOUR
AU  - Aprodu, Marian
AU  - Voisin, Claire
TI  - Green–Lazarsfeld's conjecture for generic curves of large gonality
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 335
EP  - 339
VL  - 336
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/
DO  - 10.1016/S1631-073X(03)00062-1
LA  - en
ID  - CRMATH_2003__336_4_335_0
ER  - 
%0 Journal Article
%A Aprodu, Marian
%A Voisin, Claire
%T Green–Lazarsfeld's conjecture for generic curves of large gonality
%J Comptes Rendus. Mathématique
%D 2003
%P 335-339
%V 336
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/
%R 10.1016/S1631-073X(03)00062-1
%G en
%F CRMATH_2003__336_4_335_0
Aprodu, Marian; Voisin, Claire. Green–Lazarsfeld's conjecture for generic curves of large gonality. Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 335-339. doi : 10.1016/S1631-073X(03)00062-1. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/

[1] Aprodu, M. On the vanishing of higher syzygies of curves, Math. Z., Volume 241 (2002), pp. 1-15

[2] Boratyńsky, M.; Greco, S. Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. (4), Volume 142 (1985), pp. 277-292

[3] Ehbauer, S. Syzygies of points in projective space and applications (Orecchia; Ferruccio et al., eds.), Zero-Dimensional Schemes, Proceedings of the International Conference Held in Ravello, Italy, June 8–13, 1992, de Gruyter, Berlin, 1994, pp. 145-170

[4] Fulton, W. Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math., Volume 90 (1969), pp. 541-575

[5] Green, M. Koszul cohomology and the geometry of projective varieties, J. Differential Geom., Volume 19 (1984), pp. 125-171 (With an Appendix by M. Green and R. Lazarsfeld)

[6] Green, M. Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom., Volume 20 (1984), pp. 279-289

[7] Green, M.; Lazarsfeld, R. On the projective normality of complete linear series on an algebraic curve, Invent. Math., Volume 83 (1986), pp. 73-90

[8] Teixidor i Bigas, M. Green's conjecture for the generic r-gonal curve of genus g⩾3r−7, Duke Math. J., Volume 111 (2002), pp. 363-404

[9] Voisin, C. Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. European Math. Soc., Volume 4 (2002), pp. 363-404

[10] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Preprint, | arXiv

Cité par Sources :