Voir la notice de l'article provenant de la source Numdam
We use Green's canonical syzygy conjecture for generic curves to prove that the Green–Lazarsfeld gonality conjecture holds for generic curves of genus g, and gonality d, if g/3<d<[g/2]+2.
Nous utilisons la conjecture de Green sur les syzygies canoniques des courbes génériques pour démontrer la conjecture de la gonalité de Green–Lazarsfeld pour les courbes génériques de genre g et gonalité d, avec g/3<d<[g/2]+2.
Aprodu, Marian 1, 2 ; Voisin, Claire 3
@article{CRMATH_2003__336_4_335_0, author = {Aprodu, Marian and Voisin, Claire}, title = {Green{\textendash}Lazarsfeld's conjecture for generic curves of large gonality}, journal = {Comptes Rendus. Math\'ematique}, pages = {335--339}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00062-1}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/} }
TY - JOUR AU - Aprodu, Marian AU - Voisin, Claire TI - Green–Lazarsfeld's conjecture for generic curves of large gonality JO - Comptes Rendus. Mathématique PY - 2003 SP - 335 EP - 339 VL - 336 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/ DO - 10.1016/S1631-073X(03)00062-1 LA - en ID - CRMATH_2003__336_4_335_0 ER -
%0 Journal Article %A Aprodu, Marian %A Voisin, Claire %T Green–Lazarsfeld's conjecture for generic curves of large gonality %J Comptes Rendus. Mathématique %D 2003 %P 335-339 %V 336 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/ %R 10.1016/S1631-073X(03)00062-1 %G en %F CRMATH_2003__336_4_335_0
Aprodu, Marian; Voisin, Claire. Green–Lazarsfeld's conjecture for generic curves of large gonality. Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 335-339. doi : 10.1016/S1631-073X(03)00062-1. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00062-1/
[1] On the vanishing of higher syzygies of curves, Math. Z., Volume 241 (2002), pp. 1-15
[2] Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. (4), Volume 142 (1985), pp. 277-292
[3] Syzygies of points in projective space and applications (Orecchia; Ferruccio et al., eds.), Zero-Dimensional Schemes, Proceedings of the International Conference Held in Ravello, Italy, June 8–13, 1992, de Gruyter, Berlin, 1994, pp. 145-170
[4] Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math., Volume 90 (1969), pp. 541-575
[5] Koszul cohomology and the geometry of projective varieties, J. Differential Geom., Volume 19 (1984), pp. 125-171 (With an Appendix by M. Green and R. Lazarsfeld)
[6] Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom., Volume 20 (1984), pp. 279-289
[7] On the projective normality of complete linear series on an algebraic curve, Invent. Math., Volume 83 (1986), pp. 73-90
[8] Green's conjecture for the generic r-gonal curve of genus g⩾3r−7, Duke Math. J., Volume 111 (2002), pp. 363-404
[9] Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. European Math. Soc., Volume 4 (2002), pp. 363-404
[10] C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Preprint, | arXiv
Cité par Sources :