On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
[Sur les asymptotiques des solutions globales des équations paraboliques sémi-linéaires d'ordre supérieur dans le cas surcritique]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 805-810.

Voir la notice de l'article provenant de la source Numdam

We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2mth order parabolic equation ut=−(−Δ)mu+|u|p in RN×R+, where m>1, p>1, with bounded integrable initial data u0. We prove that in the supercritical Fujita range p>pF=1+2m/N any small global solution with nonnegative initial mass, u 0 dx 0, exhibits as t→∞ the asymptotic behaviour given by the fundamental solution of the linear parabolic operator (unlike the case p]1,p F ] where solutions can blow-up for any arbitrarily small initial data). A discrete spectrum of other possible asymptotic patterns and the corresponding monotone sequence of critical exponents {p l =1+2m/(l+N),l=0,1,2,...}, where p0=pF, are discussed.

On considère le comportement asymptotique des solutions globales bornées du problème de Cauchy pour l'équation parabolique sémi-linéaire d'ordre 2m ut=−(−Δ)mu+|u|p in RN×R+, u(x,0)=u0X=L1(RN)∩L(RN), où m>1, p>1. On vérifie que dans le cas surcritique de Fujita p>pF=1+2m/N toute petite solution globale avec la donnée initiale vérifiant u 0 dx 0, montre le comportement asymptotique quand t→∞ défini par la solution fondamentale de l'opérateur linéaire parabolique, à la différence du cas p]1,p F ] quand la solution peut exploser pour la donnée initiale arbitrairement petite. Le spectre discret des pistes possibles et la suite correspondante des exponents critiques {p l =1+2m/(l+N),l=0,1,2,...}, où p0=pF, sont descriptes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02567-0

Egorov, Yu.V. 1 ; Galaktionov, V.A. 2 ; Kondratiev, V.A. 3 ; Pohozaev, S.I. 4

1 Laboratoire des mathématiques pour l'industrie et la physique, UMR 5640, Université Paul Sabatier, UFR MIG, 118, route de Narbonne, 31062, Toulouse cedex 4, France
2 University of Bath, Department of Math. Sciences, Claverton Down, BA2 7AY, Bath, UK
3 Mehmat. Faculty, Lomonosov State Univer., Vorob'evy Gory, 119899 Moscow, Russia
4 Steklov Math. Institute, Gubkina 8, GSP-1, Moscow, Russia
@article{CRMATH_2002__335_10_805_0,
     author = {Egorov, Yu.V. and Galaktionov, V.A. and Kondratiev, V.A. and Pohozaev, S.I.},
     title = {On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {805--810},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02567-0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02567-0/}
}
TY  - JOUR
AU  - Egorov, Yu.V.
AU  - Galaktionov, V.A.
AU  - Kondratiev, V.A.
AU  - Pohozaev, S.I.
TI  - On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 805
EP  - 810
VL  - 335
IS  - 10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02567-0/
DO  - 10.1016/S1631-073X(02)02567-0
LA  - en
ID  - CRMATH_2002__335_10_805_0
ER  - 
%0 Journal Article
%A Egorov, Yu.V.
%A Galaktionov, V.A.
%A Kondratiev, V.A.
%A Pohozaev, S.I.
%T On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range
%J Comptes Rendus. Mathématique
%D 2002
%P 805-810
%V 335
%N 10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02567-0/
%R 10.1016/S1631-073X(02)02567-0
%G en
%F CRMATH_2002__335_10_805_0
Egorov, Yu.V.; Galaktionov, V.A.; Kondratiev, V.A.; Pohozaev, S.I. On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range. Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 805-810. doi : 10.1016/S1631-073X(02)02567-0. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02567-0/

[1] Cui, S. Local and global existence of solutions to semilinear parabolic initial value problems, Nonlin. Anal. TMA, Volume 43 (2001), pp. 293-323

[2] Egorov, Yu.V.; Galaktionov, V.A.; Kondratiev, V.A.; Pohozaev, S.I. On the necessary conditions of existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, Volume 330 (2000), pp. 93-98

[3] Eidelman, S.D. Parabolic Systems, North-Holland, Amsterdam, 1969

[4] Galaktionov, V.A.; Kurdyumov, S.P.; Samarskii, A.A. On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, Volume 54 (1986), pp. 421-455

[5] V.A. Galaktionov, S.I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., to appear

[6] Galaktionov, V.A.; Vazquez, J.L. Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal, Volume 100 (1991), pp. 435-462

[7] Gmira, A.; Véron, L. Large time behaviour of the solutions of a semilinear parabolic equation in RN, J. Differential Equations, Volume 53 (1984), pp. 258-276

[8] Kamin, S.; Peletier, L.A. Large time behaviour of solutions of the heat equation with absorption, Ann. Sc. Norm. Pisa Cl. Sci. (4), Volume 12 (1984), pp. 393-408

[9] Gohberg, I.; Goldberg, S.; Kaashoek, M.A. Classes of Linear Operators, Vol. 1, Operator Theory: Advances and Applications, 49, Birkhäuser, Basel, 1990

[10] Lunardi, A. Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995

[11] Peletier, L.A.; Troy, W.C. Spatial Patterns. Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001

[12] Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995

Cité par Sources :