Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
[Régularité Hölder–Sobolev des solutions d'une classe d'E.D.P.S. dirigées par un bruit coloré]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 869-874.

Voir la notice de l'article provenant de la source Numdam

In this Note we present new results regarding the equivalence, the existence and the joint space–time regularity properties of various notions of solution to a class of non-autonomous, semilinear, stochastic partial differential equations defined on a smooth, bounded, convex domain D d and driven by a spatially colored noise defined from an L2(D)-valued Wiener process.

Dans cette Note nous présentons des résultats nouveaux concernant l'équivalence, l'existence et la régularité spatio–temporelle conjointe de diverses notions de solution relatives à une classe d'équations aux dérivées partielles stochastiques semilinéaires non autonomes définies dans un ouvert régulier borné convexe D d et dirigées par un bruit coloré en la variable spatiale défini à partir d'un processus de Wiener à valeurs dans L2(D).

Reçu le :
Accepté le :
DOI : 10.1016/S1631-073X(02)02359-2

Sanz-Solé, Marta 1 ; Vuillermot 2

1 Facultat de matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
2 I.E.C.N., Université Henri-Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
@article{CRMATH_2002__334_10_869_0,
     author = {Sanz-Sol\'e, Marta and Vuillermot},
     title = {H\"older{\textendash}Sobolev regularity of solutions to a class of {SPDE's} driven by a spatially colored noise},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {869--874},
     publisher = {Elsevier},
     volume = {334},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02359-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02359-2/}
}
TY  - JOUR
AU  - Sanz-Solé, Marta
AU  - Vuillermot
TI  - Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 869
EP  - 874
VL  - 334
IS  - 10
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02359-2/
DO  - 10.1016/S1631-073X(02)02359-2
LA  - en
ID  - CRMATH_2002__334_10_869_0
ER  - 
%0 Journal Article
%A Sanz-Solé, Marta
%A Vuillermot
%T Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise
%J Comptes Rendus. Mathématique
%D 2002
%P 869-874
%V 334
%N 10
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02359-2/
%R 10.1016/S1631-073X(02)02359-2
%G en
%F CRMATH_2002__334_10_869_0
Sanz-Solé, Marta; Vuillermot. Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 869-874. doi : 10.1016/S1631-073X(02)02359-2. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02359-2/

[1] Chojnowska-Michalik, A. Stochastic differential equations in Hilbert spaces, Banach Center Publ., Volume 5 (1979), pp. 53-73

[2] Dalang, R.C. Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D. E's, Electronic J. Probab., Volume 4 (1999), pp. 1-29

[3] Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992

[4] Dawson, D.A.; Gorostiza, L.G. Solutions of evolution equations in Hilbert space, J. Differential Equations, Volume 68 (1987), pp. 299-319

[5] Eidelman, S.D.; Ivasis̆en, S.D. Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc., Volume 23 (1970), pp. 179-242

[6] Krylov, N.V.; Rozovskii, B.L. Stochastic evolution equations, J. Soviet Math., Volume 16 (1981), pp. 1233-1277

[7] León, J.A. Stochastic evolution equations with respect to semimartingales in Hilbert space, Stochastics, Volume 27 (1989), pp. 1-21

[8] O. Lévêque, Hyperbolic stochastic partial differential equations driven by boundary noises, Thèse EPFL 2452, Lausanne, 2001

[9] E. Pardoux, Équations aux dérivées partielles stochastiques nonlinéaires monotones : Étude de solutions fortes de type Itô, Thèse de l'Université Paris–Orsay 1556, Paris, 1975

[10] Peszat, S.; Zabczyk, J. Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 421-443

[11] M. Sanz-Solé, P.-A. Vuillermot, Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, 2002, in preparation

[12] Walsh, J.B. An introduction to stochastic partial differential equations, École d'Été de Probabilités de Saint-Flour XIV, Lecture Notes in Math., 1180, Springer, New York, 1986, pp. 265-439

Cité par Sources :