Voir la notice de l'article provenant de la source Numdam
We report on some regularity results for weak solutions to systems modelling electrorheological fluids in the stationary case, as proposed in [8].
On prouve des résultats de régularité pour les solutions faibles de systèmes modélisant les fluides électrorhéologiques dans le cas stationnaire, utilisant le modèle introduit dans [8].
Acerbi, Emilio 1 ; Mingione, Giuseppe 1
@article{CRMATH_2002__334_9_817_0, author = {Acerbi, Emilio and Mingione, Giuseppe}, title = {Regularity results for electrorheological fluids: the stationary case}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--822}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02337-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02337-3/} }
TY - JOUR AU - Acerbi, Emilio AU - Mingione, Giuseppe TI - Regularity results for electrorheological fluids: the stationary case JO - Comptes Rendus. Mathématique PY - 2002 SP - 817 EP - 822 VL - 334 IS - 9 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02337-3/ DO - 10.1016/S1631-073X(02)02337-3 LA - en ID - CRMATH_2002__334_9_817_0 ER -
%0 Journal Article %A Acerbi, Emilio %A Mingione, Giuseppe %T Regularity results for electrorheological fluids: the stationary case %J Comptes Rendus. Mathématique %D 2002 %P 817-822 %V 334 %N 9 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02337-3/ %R 10.1016/S1631-073X(02)02337-3 %G en %F CRMATH_2002__334_9_817_0
Acerbi, Emilio; Mingione, Giuseppe. Regularity results for electrorheological fluids: the stationary case. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 817-822. doi : 10.1016/S1631-073X(02)02337-3. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02337-3/
[1] Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal., Volume 156 (2001) no. 2, pp. 121-140
[2] E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Rational Mech. Anal. (to appear)
[3] Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris, Volume 328 (1999), pp. 363-368
[4] Weak and Measure Valued Solutions to Evolution Partial Differential Equations, Appl. Math. Math. Comput., 13, Chapman and Hall, 1996
[5] Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., Volume 105 (1989), pp. 267-284
[6] Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa, Volume 23 (1996), pp. 1-25
[7] Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn., Volume 13 (2001) no. 1, pp. 59-78
[8] Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer, 2000
[9] Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, Volume 329 (1999), pp. 393-398
[10] Flow of shear dependent electrorheological fluids: unsteady space periodic case (Sequeira, A., ed.), Appl. Nonlinear Anal., Plenum Press, 1999, pp. 485-504
[11] Meyers-type estimates for solving the nonlinear Stokes system, Differential Equations, Volume 33 (1997), pp. 107-114
Cité par Sources :