Singular sets of Sobolev functions
[Ensembles singuliers des fonctions de Sobolev]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 539-544.

Voir la notice de l'article provenant de la source Numdam

We are interested in finding Sobolev functions with “large” singular sets. Given N,k, 1<p<∞, kp<N, for any compact subset A of N , such that its upper box dimension is less than Nkp, we construct a Sobolev function uW k,p ( N ) which is singular precisely on A. We introduce the notions of lower and upper singular dimensions of Sobolev space, and show that both are equal to Nkp.

Nous sommes intéressés à trouver des fonctions de Sobolev dont l'ensemble des singularités est « grand ». Étant donné N,k, 1<p<∞, kp<N, pour chaque sous-ensemble A compact de N , dont la « box-dimension » supérieure est plus petite que Nkp, nous construisons une fonction de Sobolev uW k,p ( N ) qui est singulière précisément sur A. Nous introduisons les notions de dimensions singulières inférieure et supérieure de l'espace de Sobolev, et montrons que ses valeurs sont Nkp.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02316-6

Žubrinić, Darko 1

1 Department of Applied Mathematics, Faculty of Electrical Engineering, Unska 3, 10000 Zagreb, Croatia
@article{CRMATH_2002__334_7_539_0,
     author = {\v{Z}ubrini\'c, Darko},
     title = {Singular sets of {Sobolev} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--544},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02316-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02316-6/}
}
TY  - JOUR
AU  - Žubrinić, Darko
TI  - Singular sets of Sobolev functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 539
EP  - 544
VL  - 334
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02316-6/
DO  - 10.1016/S1631-073X(02)02316-6
LA  - en
ID  - CRMATH_2002__334_7_539_0
ER  - 
%0 Journal Article
%A Žubrinić, Darko
%T Singular sets of Sobolev functions
%J Comptes Rendus. Mathématique
%D 2002
%P 539-544
%V 334
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02316-6/
%R 10.1016/S1631-073X(02)02316-6
%G en
%F CRMATH_2002__334_7_539_0
Žubrinić, Darko. Singular sets of Sobolev functions. Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 539-544. doi : 10.1016/S1631-073X(02)02316-6. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02316-6/

[1] Adams, D.R.; Hedberg, L.I. Function Spaces and Potential Theory, Springer-Verlag, 1996

[2] Aronszajn, N.; Smith, K.T. Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble), Volume 13 (1956), pp. 125-185

[3] Bagby, T.; Ziemer, W. Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc., Volume 194 (1974), pp. 129-148

[4] Calderón, A.P. Lebesgue spaces of differentiable functions and distributions, Partial Differential Equations, Proc. Sympos. Pure Math., 4, American Mathematical Society, Providence, RI, 1961, pp. 33-49

[5] Deny, J. Les potentiels d'energie finie, Acta Math., Volume 82 (1950), pp. 107-183

[6] Deny, J.; Lions, J.L. Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), Volume 5 (1953–1954), pp. 305-370

[7] Falconer, K.J. Fractal Geometry, Wiley, New York, 1990

[8] Federer, H. Geometric Measure Theory, Springer-Verlag, 1969

[9] Fuglede, B. Extremal length and functional completion, Acta Math., Volume 98 (1957), pp. 171-219

[10] Fuglede, B. On generalized potentials of functions in the Lebesgue classes, Math. Scand., Volume 8 (1960), pp. 287-304

[11] Grillot, M. Prescribed singular submanifolds of some quasilinear elliptic equations, Nonlinear Anal., Volume 34 (1998), pp. 839-856

[12] Havin, V.P.; Mazya, V.G. Use of (p,l)-capacity in problems of the theory of exceptional sets, Mat. Sb., Volume 90 (1973) no. 132, pp. 558-591 Math. USSR-Sb. 19 (1973) 547–580

[13] Heinonen, J.; Kilpeläinen, T.; Martio, O. Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993

[14] Jaffard, S.; Meyer, Y. Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc., Volume 123 (1996) no. 587

[15] Keesling, J. Hausdorff dimension, Topology Proc., Volume 11 (1986) no. 2, pp. 349-383

[16] Kilpeläinen, T. Singular solutions to p-Laplacian type equations, Ark. Mat., Volume 37 (1999), pp. 275-289

[17] Korkut, L.; Pašić, M.; Žubrinić, D. Some qualitative properties of solutions of quasilinear elliptic equations and applications, J. Differential Equations, Volume 170 (2001), pp. 247-280

[18] Malý, J.; Ziemer, W.P. Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997

[19] Meyers, N.G. Continuity properties of potentials, Duke Math. J., Volume 42 (1975), pp. 157-166

[20] Mou, L. Removability of singular sets of harmonic maps, Arch. Rational Mech. Anal., Volume 127 (1994), pp. 199-217

[21] Reshetnyak, Yu.G. On the concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., Volume X (1969) no. 5, pp. 1108-1138 (in Russian); Siberian Math. J. 13 (1969) 818–842

[22] Serrin, J. Isolated singularities of solutions of quasi-linear equations, Acta Math., Volume 113 (1965), pp. 219-240

[23] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970

[24] Veron, L. Singularities of Solutions of Second Order Quasilinear Equations, Addison-Wesley–Longman, 1996

[25] Ziemer, W.P. Weakly Differentiable Functions; Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Springer-Verlag, 1989

[26] Žubrinić, D. Generating singularities of solutions of quasilinear elliptic equations, J. Math. Anal. Appl., Volume 244 (2000), pp. 10-16

Cité par Sources :