Voir la notice de l'article provenant de la source Numdam
We prove integration by parts formulae with respect to the law of Bessel Bridges of dimension δ⩾3. For δ=3 we have an infinite-dimensional boundary measure, and for δ>3 a singular logarithmic derivative. We give applications to SPDEs with additive space-time white noise and singular drifts, whose solutions are non-negative.
Nous prouvons des formules d'intégration par parties par rapport à la loi des Ponts de Bessel de dimension δ⩾3. Remarquons que dans le cas δ=3 nous obtenons une mesure de bord infini-dimensionelle, et pour δ>3 une dérivée logarithmique singulière. Nous donnerons aussi des applications à des EDPS avec bruit blanc en espace-temps et termes de dérive singuliers, dont les solutions sont non-négatives.
Zambotti, Lorenzo 1
@article{CRMATH_2002__334_3_209_0, author = {Zambotti, Lorenzo}, title = {Integration by parts on {Bessel} {Bridges} and related stochastic partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--212}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02254-9}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02254-9/} }
TY - JOUR AU - Zambotti, Lorenzo TI - Integration by parts on Bessel Bridges and related stochastic partial differential equations JO - Comptes Rendus. Mathématique PY - 2002 SP - 209 EP - 212 VL - 334 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02254-9/ DO - 10.1016/S1631-073X(02)02254-9 LA - en ID - CRMATH_2002__334_3_209_0 ER -
%0 Journal Article %A Zambotti, Lorenzo %T Integration by parts on Bessel Bridges and related stochastic partial differential equations %J Comptes Rendus. Mathématique %D 2002 %P 209-212 %V 334 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02254-9/ %R 10.1016/S1631-073X(02)02254-9 %G en %F CRMATH_2002__334_3_209_0
Zambotti, Lorenzo. Integration by parts on Bessel Bridges and related stochastic partial differential equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 3, pp. 209-212. doi: 10.1016/S1631-073X(02)02254-9
Cité par Sources :