On global discontinuous solutions of Hamilton–Jacobi equations
[Sur des solutions globales discontinues des équations d'Hamilton–Jacobi]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 113-118.

Voir la notice de l'article provenant de la source Numdam

The uniqueness of classical semicontinuous viscosity solutions of the Cauchy problem for Hamilton–Jacobi equations is established for globally Lipschitz continuous and convex Hamiltonian H=H(Du), provided the discontinuous initial value function ϕ(x) is continuous outside a set Γ of measure zero and satisfies

ϕ(x)ϕ ** (x):= lim inf yx,y d Γϕ(y).(∗)
We prove that the discontinuous solutions with almost everywhere continuous initial data satisfying (*) become Lipschitz continuous after finite time for locally strictly convex Hamiltonians. The L1-accessibility of initial data and a comparison principle for discontinuous solutions are shown for a general Hamiltonian. The equivalence of semicontinuous viscosity solutions, bi-lateral solutions, L-solutions, minimax solutions, and L-solutions is clarified.

On établit l'unicité des solutions de viscosité semicontinues classiques du problème de Cauchy des équations d'Hamilton–Jacobi possèdant des Hamiltonien H=H(Du) convexe et Lipschitz continue globale, si la fonction initiale discontinue ϕ(x) est continue à l'extérieur de l'ensemble Γ de mesure zéro et satisfait (*). On montre la régularité des solutions discontinues des équations d'Hamilton–Jacobi possédant des Hamiltoniens localement strictement convexes : les solutions discontinues possédant les données initiales continues presque partout et satisfaisant (*) deviennent Lipschitz continues après un temps fini. On prouve la L1-accessibilité des données initiales et un principe de comparaison. On clarifie aussi l'équivalence des solutions de viscosité semicontinues, des solutions bi-latérales, des L-solutions, des solutions minimax, et des L-solutions.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02228-8

Chen, Gui-Qiang 1 ; Su, Bo 2

1 Department of Mathematics, Northwestern University, Evanston, IL 606037-2730, USA
2 Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706-1380, USA
@article{CRMATH_2002__334_2_113_0,
     author = {Chen, Gui-Qiang and Su, Bo},
     title = {On global discontinuous solutions of {Hamilton{\textendash}Jacobi} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {113--118},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02228-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/}
}
TY  - JOUR
AU  - Chen, Gui-Qiang
AU  - Su, Bo
TI  - On global discontinuous solutions of Hamilton–Jacobi equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 113
EP  - 118
VL  - 334
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/
DO  - 10.1016/S1631-073X(02)02228-8
LA  - en
ID  - CRMATH_2002__334_2_113_0
ER  - 
%0 Journal Article
%A Chen, Gui-Qiang
%A Su, Bo
%T On global discontinuous solutions of Hamilton–Jacobi equations
%J Comptes Rendus. Mathématique
%D 2002
%P 113-118
%V 334
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/
%R 10.1016/S1631-073X(02)02228-8
%G en
%F CRMATH_2002__334_2_113_0
Chen, Gui-Qiang; Su, Bo. On global discontinuous solutions of Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 113-118. doi : 10.1016/S1631-073X(02)02228-8. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/

[1] Barles, G.; Perthame, B. Discontinuous solutions of deterministic optimal stopping problem, Math. Model. Numer. Anal., Volume 2 (1987), pp. 557-579

[2] Barron, E.N.; Jensen, R. Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 15 (1990), pp. 1713-1742

[3] Chen, G.-Q.; Su, B. Discontinuous solutions in L for Hamilton–Jacobi equations, Chinese Ann. Math., Volume 2 (2000), pp. 165-186

[4] Chen G.-Q., Su B., On discontinuous solutions of Hamilton–Jacobi equations, Preprint, June 2001

[5] Crandall, M.; Lions, P.-L. Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983), pp. 1-42

[6] Crandall, M.; Ishii, H.; Lions, P.-L. A user's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67

[7] Demengel, F.; Serre, D. Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, Volume 16 (1991), pp. 221-254

[8] Giga Y., Sato M.H., A level set approach to semicontinuous solutions for Cauchy problems, Preprint, 2001

[9] Glimm, J.; Kranzer, H.C.; Tan, D.; Tangerman, F.M. Wave fronts for Hamilton–Jacobi equations: the general theory for Riemann solutions in R n , Comm. Math. Phys., Volume 187 (1997), pp. 647-677

[10] Ishii, H. Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 721-748

[11] Ishii, H. Perron's method for Hamilton–Jacobi equations, Duke Math. J., Volume 55 (1987), pp. 368-384

[12] Kruzhkov, S.N. Generalized solutions of nonlinear equations of the first order with several independent variables, II, Mat. Sb. (N.S.), Volume 114 (1967), pp. 108-134 (in Russian)

[13] Lions, P.-L. Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Math., 69, Pitman, Boston, 1982

[14] Liu, T.-P.; Pierre, M. Source solutions and asymptotic behavior in conservation laws, J. Differential Equations, Volume 51 (1984), pp. 419-441

[15] Subbotin, A.I. Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995

Cité par Sources :