Voir la notice de l'article provenant de la source Numdam
The uniqueness of classical semicontinuous viscosity solutions of the Cauchy problem for Hamilton–Jacobi equations is established for globally Lipschitz continuous and convex Hamiltonian H=H(Du), provided the discontinuous initial value function ϕ(x) is continuous outside a set Γ of measure zero and satisfies
(∗) |
On établit l'unicité des solutions de viscosité semicontinues classiques du problème de Cauchy des équations d'Hamilton–Jacobi possèdant des Hamiltonien H=H(Du) convexe et Lipschitz continue globale, si la fonction initiale discontinue ϕ(x) est continue à l'extérieur de l'ensemble Γ de mesure zéro et satisfait (). On montre la régularité des solutions discontinues des équations d'Hamilton–Jacobi possédant des Hamiltoniens localement strictement convexes : les solutions discontinues possédant les données initiales continues presque partout et satisfaisant () deviennent Lipschitz continues après un temps fini. On prouve la L1-accessibilité des données initiales et un principe de comparaison. On clarifie aussi l'équivalence des solutions de viscosité semicontinues, des solutions bi-latérales, des L-solutions, des solutions minimax, et des L∞-solutions.
Chen, Gui-Qiang 1 ; Su, Bo 2
@article{CRMATH_2002__334_2_113_0, author = {Chen, Gui-Qiang and Su, Bo}, title = {On global discontinuous solutions of {Hamilton{\textendash}Jacobi} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--118}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02228-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/} }
TY - JOUR AU - Chen, Gui-Qiang AU - Su, Bo TI - On global discontinuous solutions of Hamilton–Jacobi equations JO - Comptes Rendus. Mathématique PY - 2002 SP - 113 EP - 118 VL - 334 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/ DO - 10.1016/S1631-073X(02)02228-8 LA - en ID - CRMATH_2002__334_2_113_0 ER -
%0 Journal Article %A Chen, Gui-Qiang %A Su, Bo %T On global discontinuous solutions of Hamilton–Jacobi equations %J Comptes Rendus. Mathématique %D 2002 %P 113-118 %V 334 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/ %R 10.1016/S1631-073X(02)02228-8 %G en %F CRMATH_2002__334_2_113_0
Chen, Gui-Qiang; Su, Bo. On global discontinuous solutions of Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 113-118. doi : 10.1016/S1631-073X(02)02228-8. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02228-8/
[1] Discontinuous solutions of deterministic optimal stopping problem, Math. Model. Numer. Anal., Volume 2 (1987), pp. 557-579
[2] Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 15 (1990), pp. 1713-1742
[3] Discontinuous solutions in L∞ for Hamilton–Jacobi equations, Chinese Ann. Math., Volume 2 (2000), pp. 165-186
[4] Chen G.-Q., Su B., On discontinuous solutions of Hamilton–Jacobi equations, Preprint, June 2001
[5] Viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983), pp. 1-42
[6] A user's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67
[7] Nonvanishing singular parts of measure valued solutions for scalar hyperbolic equations, Comm. Partial Differential Equations, Volume 16 (1991), pp. 221-254
[8] Giga Y., Sato M.H., A level set approach to semicontinuous solutions for Cauchy problems, Preprint, 2001
[9] Wave fronts for Hamilton–Jacobi equations: the general theory for Riemann solutions in , Comm. Math. Phys., Volume 187 (1997), pp. 647-677
[10] Uniqueness of unbounded viscosity solution of Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 721-748
[11] Perron's method for Hamilton–Jacobi equations, Duke Math. J., Volume 55 (1987), pp. 368-384
[12] Generalized solutions of nonlinear equations of the first order with several independent variables, II, Mat. Sb. (N.S.), Volume 114 (1967), pp. 108-134 (in Russian)
[13] Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Math., 69, Pitman, Boston, 1982
[14] Source solutions and asymptotic behavior in conservation laws, J. Differential Equations, Volume 51 (1984), pp. 419-441
[15] Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995
Cité par Sources :